

TH244A001_UserGuide

This document contains information on a new product under development by Megawin.

Megawin reserves the right to change or discontinue this product without notice.

 Megawin Technology Co., Ltd. 2023 All rights reserved.
2024/08 version 0.40

TH244A001_UserGuide

Version: 0.40

TH244A001_UserGuide

2 Version: 0.40 megawin

1. Revision ... 7

2. Development Board Overview ... 8

3. Specification of development board ... 10

3.1. Power supply block diagram ... 18

3.2. Power supply priority ... 18

3.3. External power DC-JACK（Location DC1）: 19

3.4. External power VIN(Location CN1)： .. 20

3.5. USB1/USB2 power supply(Location USB1，USB2) 20

3.6. 5V/3.3V output(Location CN1 CN5)： .. 21

3.7. J1 development board operating voltage selection 22

3.8. J2 ADC external reference voltage switching 23

3.9. J3 Virtual com port enabled .. 24

4. Digital I/O .. 25

4.1. Brief Introduction ... 25

4.2. Drive load capacity reference .. 27

4.3. Digital I/O list ... 28

5. Time function TIMER .. 32

6. Alternate function selection ... 34

TH244A001_UserGuide

megawin Version: 0.40 3

7. PWM .. 35

8. DAC .. 38

9. ADC .. 44

9.1. ADC brief introduction .. 44

9.2. ANALOG IN list ... 47

10. Serial I/O .. 49

10.1. UART.. 50

10.2. IIC... 54

10.3. SPI .. 58

11. USB ... 62

11.1. USB1 .. 62

11.2. USB2 .. 63

12. RTC ... 67

13. SLEEP/STOP Mode .. 69

14. IWDT .. 74

14.1. Independent Watchdog Timer .. 74

14.2. IWDT dedicated interrupt .. 75

14.3. IWDT library main usage ... 75

TH244A001_UserGuide

4 Version: 0.40 megawin

15. Timer interrupt-TimerOne .. 76

15.1. TimerOne(introduce) .. 76

15.2. Timer One library control output PWM 77

15.3. TimerOne library timing interrupt ... 78

16. Timer interrupt Mstimer2 ... 78

17. EEPROM ... 81

18. Multi-segment digital tube library display ... 86

19. Other Important Notes ... 87

19.1. AREF (CN3) .. 87

19.2. RESET PIN (CN1-RESET) ... 87

19.3. RESET KEY: SW2 .. 88

19.4. USER KEY SW3 .. 88

19.5. L13: LED1 .. 89

19.6. TXLED/RXLED .. 89

19.7. MCU power switch SW1 / Power ON LED2 90

19.8. LED6/7/8 indicated MLink connection state between USB1

and PC 90

19.9. IOREF ... 91

TH244A001_UserGuide

megawin Version: 0.40 5

19.10. Development kit path management 92

19.11. Virtual com setting and program download 93

20. TH244A001 reset .. 95

21. Common use function and basic usage .. 96

21.1. GPIO read and write control .. 96

21.2. Delay function .. 97

21.3. Timer ... 98

21.4. PWM .. 98

21.5. DAC ... 101

21.6. ADC ... 103

21.7. UART.. 106

21.8. IIC... 111

21.9. SPI Master ... 118

21.10. USB .. 120

21.11. USB-mouse ... 121

21.12. USB-Keyboard .. 128

21.13. RTC .. 134

21.14. SLEEP/STOP mode .. 137

TH244A001_UserGuide

6 Version: 0.40 megawin

21.15. IWDT .. 139

21.16. TimerOne .. 144

21.17. MsTimer2 .. 149

21.18. EEPROM .. 151

TH244A001_UserGuide

megawin Version: 0.40 7

1. Revision

1. 20230712 Initial release V0.20

2. 20231217 Development kit 2.0.0 released，modified to support 36MHz mains

frequency，18MHz SPI clock and other descriptions.

3. 20240229 Modification of some expressions and addition of more graphic

material

4. 20240514 update to V0.30

Due to the release of 2.2.0, User Guide has added the use of SLEEP/IWDT, see

SLEEP/STOP Mode and IWDT for details.

5. 20240618 Released version 2.3.0 of the development kit. Instruction manual

Updated to V0.40 with several textual representations and image changes;

Add library files that support timer interrupts Timer One and Mstimer2; Add

library files supporting EEPROM (built-in FLASH to simulate maximum 8K

EEPROM operation); Add the library file which supports digital tube

(TM1637Display/ShiftRegister74HC595); Add PWM can set the frequency

range from 300Hz~5000Hz, add support to low frequency 1Hz; Add serial

port disable function; Modify the description text of SLEEP/IWDT section;

6. 20240830 Update TH244A to TH244A001.

TH244A001_UserGuide

8 Version: 0.40 megawin

2. Development Board Overview

Development board TH244A001, compatible with UNO R3 interface and

provides more available GPIO and communication interfaces. Combine the

hardware interfaces of Arduino UNO R3 and Arduino MEGA2560. The MCU is

upgraded from 8 bit MCU of UNO/2560 to 32 bit Cortex-M0, and the MCU has

USB2.0 interface, which can be acted as a keyboard or mouse.

Development board TH244A001 is based on Megawin ARM Cortex-M0

chip MG32F02U128AD64. TH244A001 built-in downloader MLink, users do not

need to buy other downloader.

TH244A001 hardware architecture

TH244A001_UserGuide

megawin Version: 0.40 9

In addition to support common MCU development environments, such as

Keil. In order to support the open source Arduino IDE development

environment, a development kit is specially designed.

Only by installing the TH244A001 corresponding support package, you

can use the Arduino IDE to develop the programs, compile and download

program.

Hardware and software composition based on TH244A001 development

The download and update method of the development kit please refer to

TH244A001_UserManual- the installation and update of the development

kit of the third-party development board.

Based on
TH244A001 for
Arduino
development

1. Hardware: Development board
TH244A001 integrated programmer
and ARM M0 MCU

2. Software: Arduino official IDE and
specialized development packages.
Current packages including:
ADC/DAC/PWM/UART/I2C/SPI/TIME
R/RTC/USB/GPIO

The new packages can be
automatically detected through the
Arduino IDE auto check and update.

3. Third party modules
Devices as inputs or outputs for
TH244A001

TH244A001_UserGuide

10 Version: 0.40 megawin

3. Specification of development board

Board name Operate voltage Frequency Digital IO
Analog

ADC

Analog output

DAC

Megawin TH244A001
5V /3.3V

optional

The clock

source is

12MHz

MCU

frequency

36MHz

47

16

8bit 10bit 12bit

(Default)

1

12bit

PWM UART SPI IIC USB DEVICE Programming interface

x7

8bit

default to 1KHz，

adjustable from

1Hz~5KHz

x7

Transmit/receive

buffer 64Bytes

Default 9600bps

Macro

definitions can

be used to shut

down specified

ports to

conserve SRAM

x1(Master)

Supports up

to 18MHz

clock

x2(Master/Slave)

Supports setting

the clock to

100KHz; 400KHz;

1MHz

x1

USB2 as USB-HID

device: Mouse,

Keyboard

USB1 uploads programs

via MLink MG84FG516

 MG32F02U128AD64 (ARM 32 bit Cortex™-M0 CPU);

 The clock source is built-in IHRCO (built-in high frequency RC

oscillator) 12MHz；

 IWDT Clock Source: Embedded ILRCO (Built-in high frequency RC

oscillator) 32KHz;

 MCU max frequency up to 36MHz.

 Development board has 47 digital I/O pins (0~46);

TH244A001_UserGuide

megawin Version: 0.40 11

 Pin 46 is connected to the USER KEY on the development board

through a pull-up resistor, which is convenient for the design and

testing of the keypad

 7 channels PWM output;

 8 bit Duty resolution which can be set from 0 to 255

corresponding to 0 to 100%;

 Default frequency is 1000Hz；

 Provides a function to quickly modify the PWM frequency:

analogWriteFrequency(PWM_FRQ_XX，Fre),

Frequency Fre setting range 1Hz~5000Hz；

 7 channels PWM can be set independently in 3 groups (see

PWM section for details);

 7 channels PWM duty can be set independently;

 2-way can be set up for PWM output by using Timer One, a timer

library, which supports PWM output on pin 42/43, see Timer One

for details.

 16 analog input channels ADC. Using analogRead() to get ADC

values for analog voltages.

 Default ADC resolution is 12bit, ADC conversion range

0~4095;

TH244A001_UserGuide

12 Version: 0.40 megawin

 ADC resolution can be set to 8（0-255）,10（0-1023）,12

（0-4095）by using analogReadResolution(ref)

Notice: ADC Value needs conversion formula to get actual

voltage, need re-calibration.

 1 12bit DAC channel, output from development board 21 pin，

using analogWrite(21，Value) can output from 0~VDD linear

voltage; Value range 0~4095；

 7 channels UART maximum buadrate 115200bps

 UART0 is designed for downloading programs or serial port

monitors;

 UART1/2/4/5/6/7 for debugging or communicating with

other devices (UART7 is multiplexed with IIC0)

 The development kit initializes all serial ports

Serial/Serial1/2/4/5/6/7 by default, and the default speed is

9600bps.

 In order to save the SRAM occupied by the initialized serial

ports, the development kit supports disabling the specified

serial ports through macro definitions, see the UART

 2 channels IIC (IIC0 is multiplexed with UART7); SCL is 100 KHz by

default. Can be set to 400KHz,1MHz

 1 channel SPI, maximum speed is 18Mbps;

TH244A001_UserGuide

megawin Version: 0.40 13

 Any I/O pin or RST pin to GND voltage: -0.5V~VDD+0.5V；

 128KB Flash for code and data; The maximum 8K bytes can be

simulated as EEPROM through the use of EEPROM library. in order to

save SRAM, the development kit initializes 512 bytes EEPROM

capacity by default, and the EEPROM size can be modified by macro

definition, see EEPROM for details;

 16KB bytes SRAM

 USB2.0 Full speed, ,Support HID, can acted as USB-Mouse or USB-

Keyboard, can using Joystick for USB-Mouse；

 The operation voltage of the development board can be selected to

5V or 3.3V through the 2.54mm 2pin Jumper J1;

 Power supply can using DC JACK，VIN or USB1/2；

 When using DC JACK supply, Vin port can be used as output;

 3.3V output current limit

 50mA MAX for DC JACK/VIN input;

 300mA MAX for USB input;

 5V output current limit

 The DC input JACK/VIN, 50 ma MAX.

 300mA MAX for USB input;

TH244A001_UserGuide

14 Version: 0.40 megawin

TH244A001 PCB placement are as follows:

TH244A001_UserGuide

megawin Version: 0.40 15

TH244A001_UserGuide

16 Version: 0.40 megawin

Power supply and J1, J2, J3

TH244A001 power can be supplied from USB1, USB2, DC JACK (2mm DC JACK

input) or CN1 VIN input. TH244A001 can operate under any power supply

input mode.

USB1 must be connected to PC when download program. (USB 2.0 Type A

connector to Type C cable or USB 3.1 Type C TO C cable)

Operate voltage Development board operate voltage 3.3 V or 5 V, use J1 to switch

(see note J1)

TH244A001_UserGuide

megawin Version: 0.40 17

DC IN/VIN input 7V~12V, 7V~9V is recommended.

MCU MG32F02U VDD maximum current 200mA

MCU MG32F02U I/O I/O current limit is 38.5mA(5V), 13mA(3.3V)

5V/3.3V output Limit to 50mA;

When a larger current is needed for the external module power

supply, the ground of module and development board should be

reliably;

USB1/USB2 500mA

TH244A001_UserGuide

18 Version: 0.40 megawin

Main interfaces

3.1. Power supply block diagram

3.2. Power supply priority

DC JACK/VIN >USB1 (Debug port)>USB2 (Native port)

TH244A001_UserGuide

megawin Version: 0.40 19

3.3. External power DC-JACK（Location DC1）:

AC-DC adapter can be used (7V~9V DC output is recommended).

The DC power adapter can be connected to DC-Jack via a 2.0 mm plug. The

DC input range of the on board voltage regulator is from 7V to 12V. If the

input voltage is lower than 7V, the main 5V DC supply may lower than 5V. If

the input voltage is higher than 12V, it will damage the on board voltage

regulator. The recommended input voltage range is 7V to 9V.

When an external power supply DC-jack is used, it can also be used for the

external devices. The VIN pin can be used as the power supply of the external

devices (please make sure that the external devices operating voltage is within

the voltage of the DC JACK). For example, the motor power can be connected

to VIN, which can provide enough power for the motor.

TH244A001_UserGuide

20 Version: 0.40 megawin

2D 3D

3.4. External power VIN(Location CN1)：

 The system can use VIN PIN as an external power source;

 When power source from the DC JACK, VIN PIN can also supply

power to external devices. Pay attention to whether the voltage suits

the requirements of the modules.

2D 3D

3.5. USB1/USB2 power supply(Location USB1，USB2)

USB1 and USB2 are USB Type C interface, which can provides 5V/500mA

power supply to the development board and accessory board. USB1 is the main

channel of power supply.

TH244A001_UserGuide

megawin Version: 0.40 21

3.6. 5V/3.3V output(Location CN1 CN5)：

5V：Through LDO output or USB1/USB2. TH244A001 provides 3 pins for

5V output, located at CN1 and CN5. Users can supply power to the

TH244A001 from DC-JACK, USB1, USB2 and VIN. The 5V and 3.3V are used as

output, and input is not allowed. When use DC-JACK as power source, +5V

output maximum current 50 mA. When USB power supply, +5V output

maximum current is 300mA.

The 3.3V voltage pin current output limit by the LDO, when the DC JACK

power supply, the maximum current of +3.3V is 50mA; When the USB is

supplied, the maximum current of +3.3V is 300mA. This voltage is the

operating voltage of MG32F02U128 and MG84FG516. See the power supply

block diagram for details.

5V or 3.3V is the operating voltage of MG32F02U128 and MG84FG516.

The working voltage of the development board is switched by switch J1. Select

5 V or 3.3 V power supply as needed.

TH244A001_UserGuide

22 Version: 0.40 megawin

 TH244A001 provides:

1 3.3V output pin;

3 5V output pin;

5 GND pin；

1 IOREF voltage which the

same as MG32F02U J1

setting voltage;

It is convenient for users to

access more modules

3.7. J1 development board operating voltage

selection

Users choose the appropriate operating voltage according to their needs.

Development board to work for 5V voltage by default.

TH244A001_UserGuide

megawin Version: 0.40 23

3.8. J2 ADC external reference voltage switching

MG32F02U128 in TH244A001 can set the ADC reference voltage to

external voltage (VERF+) or internal IVR24. VREF+ can be fixed as the MCU

working power supply VDUT (which is the more commonly used way), or the

reference voltage AREF can be provided by the external device. The

development board uses J2 to switch the two connections, and the default is

VREF+ directly connected to VDUT. However, when the analog signal input is

weak, such as 1.8V or 3.3V or other ranges, use external voltage as a reference,

which can improve the sampling accuracy.

The ADC reference voltage is set to external VREF+ as the reference

voltage by default, and the VREF+ voltage is the same as the selection of J1.

TH244A001_UserGuide

24 Version: 0.40 megawin

3.9. J3 Virtual com port enabled

Short J3 circuit, is to enable USB1 virtual com port (VCP), used for downloading

programs and debugging.

Development board default remain

short circuit,

Place 2.54mm 2pin Jumper to enable

virtual com port

TH244A001_UserGuide

megawin Version: 0.40 25

4. Digital I/O

4.1. Brief Introduction

Digital I/O: Arduino number 0~46, 47 in total

(pin 46 is specifically defined as USER KEY input, see USER KEY SW3

for details)

Pin 46 default button SW3 status: not pressed for HIGH, pressed for LOW;

Pin 0~45 Connect to the connector, in addition to GPIO function,

multiplexing ADC/DAC/ serial I/O(UART/IIC/SPI), etc.;

TH244A001_UserGuide

26 Version: 0.40 megawin

 TH244A001 defines 47 GPIOs that can be used by direct programming

according to the use of Arduino. User can directly use the official Arduino

functions, such as pinMode (), digitalWrite (), digitalRead () and other

functions. The board works at 3.3V or 5V (depending on J1 on the board, the

default is 5V). The working voltage is 5V or 3.3V. The current of the I/O port is

related to the output power setting, as shown in the table below. The default

setting is full power output, and the pull-up resistor is disabled.

When driving the load with GPIO, should be considered that the

driving current should not exceed the limit. The suggestions are as

follows:

 Operate voltage 5.0V: 38.5mA Max.

 Operate voltage 3.3V: 13mA Max.

TH244A001_UserGuide

megawin Version: 0.40 27

4.2. Drive load capacity reference

Default GPIO is full power, low speed mode, internal pull up resistor is not

enabled. When low power or high speed mode is required, special Settings are

required. For example, SWD/IIC/UART/SPI/USB and other modes with IO

configured for communication are configured to high speed mode by default.

VDD=5V Condition，
I/O full power output HIGH, maximum current (push pull) 38.5mA

I/O full power output LOW, maximum current 30.4mA

The internal reset pin pull-up resistance is 250Kohm. All other I/Os have

13.3Kohm internal pull-up resistors;

VDD=3.3V Condition，
I/O full power output HIGH, maximum current (push pull) 13mA

I/O full power output LOW, maximum current 11.3mA

The internal reset pin pull-up resistance is 426Kohm. All other I/ Os have

19.5Kohm internal pull-up resistors;

TH244A001_UserGuide

28 Version: 0.40 megawin

4.3. Digital I/O list

No. MG32F02U128AD64

LQFP64 pin No.

MG32F02U128AD64

Pin name

Arduino Pin name*

1 35 PC9/RXD1 0

2 34 PC8/TXD1 1

3 14 SD3/PB4 2

4 20 PB10 3

5 33 PC7 4

6 21 PB11 5

7 26 ICKO/PC0 6

8 15 SD2/PB5 7

9 38 PC12 8

10 42 PD0 9

11 51 NSS/PD9 10

TH244A001_UserGuide

megawin Version: 0.40 29

12 44 MOSI/PD2 11

13 49 MISO/PD7 12

14 50 SPI0_CLK/PD8 13

15 58 PA0/ADC0 14/A0**

16 59 PA1/ADC1 15/A1

17 60 PA2/ADC2 16/A2

18 61 PA3/ADC3 17/A3

19 62 PA4/ADC4 18/A4

20 63 PA5/ADC5 19/A5

21 13 MOSI/PB3 20

22 12 SCK/PB2 21 & DAC***

23 37 PC11/SDA1 22

24 36 PC10/SCL1 23

25 17 PB7 24

26 16 PB6 25

27 24 PB14 27

28 23 PB13 26

29 25 PB15 28

30 22 PB12 29

31 10 NSS/PB0 31

32 11 MISO/PB1 30

TH244A001_UserGuide

30 Version: 0.40 megawin

33 43 PD1 32

34 45 PD3 33

35 52 PD10 34

36 53 PD11 35

37 64 PA6/ADC6 36/A6**

38 1 ADC7/PA7 37/A7**

39 2 ADC8/PA8 38/A8**

40 3 ADC9/PA9 39/A9**

41 4 ADC10/PA10 40/A10**

42 5 ADC11/PA11 41/A11**

43 6 ADC12/PA12 42/A12**

44 7 ADC13/PA13 43/A13**

45 8 ADC14/PA14 44/A14**

46 9 ADC15/PA15 45/A15**

47 27 PC1 46 for USER KEY****

Digital I/O special notes

* Arduino Pin name The number of this marker can be referenced

directly in Arduino. Integers also make it easy to use loops, as follows:

 digitalWrite(40，HIGH), write 40 pin output HIGH

 digitalRead(15), read 15 pin input state

TH244A001_UserGuide

megawin Version: 0.40 31

 analogWrite(3，200), pin 3 output PWM which duty is 200/255=78.4%

The default frequency is 1000Hz;

 analogRead(A0) reads the simulated analog data value from the AO

port

 for(int i = 0; i<20;i++){

pinMode(i，OUTPUT);

} //Using loop, setting pin 0~19 as output

**Means digital port, and can be reused as an analog input port;

A0~A15 mean analog input channels

*** 21 is DAC output, analogWrite(21，value) value: 0~4095, output

voltage would be 0~VDD without external loads.

**** USER KEY, used for key function, the hardware has been designed for pull-

up resistor, can only be used as INPUT;

Common use functions:

PinMode ()

DigitalRead ()

DigitalWrite ()

See GPIO read and write control for common functions and more details.

TH244A001_UserGuide

32 Version: 0.40 megawin

5. Time function TIMER

The time function is very important in timing control. Arduino provides

functions about time control. Arduino provides four main time functions as follows.

 Block functions：delay(ms) and delayMicroseconds(us)

 delay(ms): Pause execution of the device for milliseconds (ms)

 delayMicroseconds(us): Pause execution of the device for

microseconds (us)

In delay time, MCU can only make time to wait, until the delay time to complete.

If the waiting phase needs to be delayed and other requests need to be responded

to at any time, a blocking function such as delay cannot be used. Use this with

caution in general programming.

For example, use delay () to delay by 1s:

Delay (1000); //delay for 1s, MCU can't do anything else at this stage;

 Non-blocking：Use systick. When using millis or micros ((),

 the MCU can handle something else while it it's timing

 millis() Returns the number of milliseconds since the Arduino board

started

 micros() Returns the number of milliseconds since the Arduino board

started

For example, using millis () to achieve an interval of 1s, the system timing

TH244A001_UserGuide

megawin Version: 0.40 33

phase can perform other tasks

unsigned long previousMillis = 0; // define variable to store current systick

const long interval = 1000; // time interval to wait;

unsigned long currentMillis = millis (); // Return the number of ms, this time will

start at 0 when the system has run, repower or RESET;

if (currentMillis - previousMillis >= interval)

{

 previousMillis = currentMillis;

 // Place tasks after meet the needs of the time waiting

}

Common use functions:

delay (ms)

delayMicroseconds (us)

millis ()

micros ()

See Delay function, Timer Using for details.

TH244A001_UserGuide

34 Version: 0.40 megawin

6. Alternate function selection

Many Digital I/O pins can be configured to use special functions, which

are described in the chip manual AFS section.

Specific functions here mainly refer to PWM, Analog Output (DAC), Analog

input (ADC), UART, IIC, SPI, etc.

Generally, users should complete the initialization of these multiplexing

functions in setup (). After a pin initializes function completed, it cannot use

another function in the definition to avoid conflicts. For example, pin 21 is set

to an analog voltage output DAC, then IIC0 (20->SCL, 21->SDA) cannot be

configured. Such as the initialization IIC0 (20 - > SCL, 21 - > SDA), cannot use

UART7 (20 - > 21 - > TX and RX).

TH244A001_UserGuide

megawin Version: 0.40 35

7. PWM

TH244A001 provides 7 PWM channels at 3, 6, 5, 8, 9, 10 and 11. The

default frequency is 1000Hz. The PWM channels can control the duty

independently, ranging from 0 to 100%.

Different from other official development boards, the development kit

of TH244A001 supports frequency setting. Users can set the frequency

range from 1Hz to 5000Hz. The frequency setting is divided into three

groups according to the following figure: 3/6 (TM20), 5/8/9(TM36) and

10/11(TM26).

Group
MG32F02U128AD64

LQFP64 pin No.

MG32F02U128AD64

Pin name

Arduino

Pin name
TMxx Frequency

TM20
20 PB10 3 TM20_OC11 Default 1KHz

26 PC0 6 TM20_OC00 Default 1KHz

TM36

21 PB11 5 TM36_0C12 Default 1KHz
38 PC12 8 TM36_OC3 Default 1KHz
42 PD0 9 TM36_OC2 Default 1KHz

TM26
44 PD2 11 TM26_OC00 Default 1KHz
51 PD9 10 TM26_OC11 Default 1KHz

Refer to the PWM fixed frequency of the official Arduino board:

TH244A001_UserGuide

36 Version: 0.40 megawin

TH244A001 only 3/6, 5/8/9, 10/11 pin that support PWM function can use the

function to set the frequency.

Special Note 1: 3/6(TM20), 5/8/9(TM36) and 10/11(TM26) can be set

independently. Default frequency is 1000Hz;

 analogWriteFrequency(PWM_FRQ_D3_D6，Frq) : set the 3/6 output frequency

 analogWriteFrequency(PWM_FRQ_D5_D8_D9，Frq) : set the 3/6 output frequency

 analogWriteFrequency(PWM_FRQ_D10_D11，Frq) : set the 3/6 output frequency

 analogWriteFrequency(PWM_FRQ_ALL，Frq) : set the 3/6, 5/8/9, 10/11 output

frequency

 Frq is the set frequency, can be set in the range of 1Hz~5000Hz

Special Use Note 2:

When using the Timer One library function, the function of PWM 10/11 cannot be

TH244A001_UserGuide

megawin Version: 0.40 37

used.

When using MsTimer2 library function, PWM D3/D6 function cannot be used.

When using the tone () function, all PWMs cannot be used.

Common use functions:

Function: analogWrite(pin， ulValue) // ulValue=0~255

Function: analogWriteFrequency(PWM_FRQ_XX，Fre); Set PWM frequency.

See for PWM details.

TH244A001_UserGuide

38 Version: 0.40 megawin

8. DAC

TH244A001 provides one 12 bit DAC_P0 (0 ~ 4095) of the DAC output

channel. The full scale output analog voltage range is 0V~VDD, and the output

is linear.

TH244A001 PIN 21 is DAC output interface. User can connect PIN 21 to

external modules. The hardware notes are as follows for improve output

voltage stability.

DAC_P0 is MG32F02U 12 bit analog output channel

TH244A001_UserGuide

megawin Version: 0.40 39

Any PIN 21 can be used

Function: analogWrite(21，value)

The value range is 0 to 4095. The DAC uses the same function as the PWM

control, corresponding to the actual output voltage of 0~VDD;

Demo code:

void setup () {

analogWrite(21,500); // Modify different values, the simulation output voltage

is 500/4095*VDD

}

void loop () {

}

DAC output (without load)

TH244A001_UserGuide

40 Version: 0.40 megawin

TH244A001_UserGuide

megawin Version: 0.40 41

Reference data

analogWrite(21， Value) VDD3.3V VDD5V

Value mV V mV V

0 0 0 0 0

100 80 0.08 122 0.122

200 160 0.16 243 0.243

300 240 0.24 363 0.363

400 320 0.32 484 0.484

500 400 0.4 606 0.606

600 481 0.481 727 0.727

700 560 0.56 840 0.84

800 643 0.643 968 0.968

900 718 0.718 1080 1.08

1000 800 0.8 1210 1.21

1100 884 0.884 1330 1.33

1200 960 0.96 1450 1.45

1300 1030 1.03 1560 1.56

1400 1110 1.11 1680 1.68

1500 1190 1.19 1800 1.8

1600 1270 1.27 1920 1.92

1700 1340 1.34 2030 2.03

TH244A001_UserGuide

42 Version: 0.40 megawin

1800 1430 1.43 2170 2.17

1900 1520 1.52 2280 2.28

2000 1600 1.6 2400 2.4

2100 1680 1.68 2520 2.52

2200 1750 1.75 2640 2.64

2300 1830 1.83 2760 2.76

2400 1910 1.91 2880 2.88

2500 1990 1.99 3010 3.01

2600 2060 2.06 3120 3.12

2700 2150 2.15 3260 3.26

2800 2240 2.24 3380 3.38

2900 2320 2.32 3490 3.49

3000 2380 2.38 3600 3.6

3100 2460 2.46 3720 3.72

3200 2540 2.54 3860 3.86

3300 2620 2.62 3940 3.94

3400 2700 2.7 4080 4.08

3500 2780 2.78 4200 4.2

3600 2860 2.86 4340 4.34

3700 2940 2.94 4430 4.43

3800 3040 3.04 4580 4.58

TH244A001_UserGuide

megawin Version: 0.40 43

3900 3120 3.12 4700 4.7

4000 3210 3.21 4820 4.82

4050 3240 3.24 4860 4.86

4095 3280 3.28 4960 4.96

Common use functions:

Function: analogWrite(21，Value)

See DAC for details.

Note: when 21 is set to analog output mode, I2C0 (SCL0->20; SDA0->21) is not

available;

TH244A001_UserGuide

44 Version: 0.40 megawin

9. ADC

9.1. ADC brief introduction

There are 16 analog inputs in total, that A0-A5 corresponds to 14-19;

A6-A15 corresponds to 36-45

12 bit 1.5Msps SAR ADC

▬ Configurable resolution: 12/10/8 bit. TH244A001 is set to 12bit by

default.

▬ TH244A001 provides 16 channels input.

-ADC reference voltage can set to external VREF+ or internal IVR24.

 analogRead (): read A0~A15 ADC Value, return value is 12 bit,

0~4095 by default. analogRead (A0) acted the same as analogRead

(14). Generally use analogRead(Ax), x:0~15;

TH244A001_UserGuide

megawin Version: 0.40 45

 analogReadResolution (ref): set ADC resolution to 8 bit, 10 bit or 12

bit. The default is 12 bit;

 analogReference (type): set ADC reference voltage to external

VREF+ or internal IVR24. It is recommended to use the default

external voltage source VREF+ as the reference voltage;

 The parameter type: AR_INTERNAL，AR_EXTERNAL，AR_DEFAULT

（AR_EXTERNAL）

TH244A001 can be set ADC reference voltage to external VREF+ or

internal IVR24. VREF+ fixed as MCU operate voltage VDD (this is the

more common way), can also be provided by external reference voltage

AREF. TH244A001 use J2 to switch the external reference and the

default is VREF+. When external analog input is weak, such as 1.8V, 3.3V

or other voltage, using external voltage can improve ADC performance.

The sampling accuracy of the ADC is as follows:

When ADC is set to 10 bit resolution,

1. For example, VREF+ is fixed to VDD 5V

TH244A001_UserGuide

46 Version: 0.40 megawin

 Analog input 0~5V will be mapped to 0~1023, and precision is 5/1024=

4.882mV

Input voltage between 0~4.882mV will be mapped to 0,

Input voltage between 4.883mV~9.764mV will be mapped to 1......

Input voltage between 9.765mV~14.646mV will be mapped to 2......

 Analog input 0~3.3v will be mapped to 0~676 (676*4.882mV=3.3v)

2. If VREF+ is set to AREF, and AREF input is 3.3V, then analog input 0~3.3v will be

mapped to 0~1023, the precision is 3.3/1024= 3.223mV. And the actual precision

is increased from 4.882mV to 3.223mV.

3 If the resolution is set from 10 bit to12 bit,

For example, VDD= 5V, VREF+ is connected to VDD,

10bit resolution, 5V/1024=4.882mV, TH244A001 is 10 bit by default.

12bit resolution, 5V/4096=1.221mV，

TH244A001_UserGuide

megawin Version: 0.40 47

ADC reference voltage source note:

9.2. ANALOG IN list

No.
MG32F02U128AD64

LQFP64 pin No.

MG32F02U128AD64

Pin name
Arduino Pin name Arduino name2

1 58 PA0/ADC0 14 A0

2 59 PA1/ADC1 15 A1

3 60 PA2/ADC2 16 A2

4 61 PA3/ADC3 17 A3

5 62 PA4/ADC4 18 A4

6 63 PA5/ADC5 19 A5

7 64 PA6/ADC6 36 A6

8 1 ADC7/PA7 37 A7

TH244A001_UserGuide

48 Version: 0.40 megawin

9 2 ADC8/PA8 38 A8

10 3 ADC9/PA9 39 A9

11 4 ADC10/PA10 40 A10

12 5 ADC11/PA11 41 A11

13 6 ADC12/PA12 42 A12

14 7 ADC13/PA13 43 A13

15 8 ADC14/PA14 44 A14

16 9 ADC15/PA15 45 A15

Common use functions:

Function: analogRead ()

Function: analogReadResolution (ref)

Function: analogReference (type)

Function: map ()

See for ADC details.

TH244A001_UserGuide

megawin Version: 0.40 49

10. Serial I/O

TH244A001 provides many interfaces to communicate with other PC,

Arduino board or modules. TH244A001 provides 7 channels UART, 2channels

IIC, 1 channel SPI. Using these interfaces can communicate with other PC,

external devices or modules.

Usually using library function when using Arduino. Commonly used three

kinds of interfaces that UART, IIC and SPI are using Arduino library function.

Users need to learn to use the functions. When users need to write their own

function, then need to write the functions according to the protocols.

UART -> Serial.h; IIC-> Wire.h; SPI->SPI.h

The front side of TH244A001 has a special white square marking the

UART/IIC/SPI pin position

TH244A001_UserGuide

50 Version: 0.40 megawin

The back side of TH244A001 has specifically list communication

UART/IIC/SPI available pin position

10.1. UART

TH244A001 provides 7 channels UART: UART0 (download code only)/

UART1/ UART2/ UART4/ UART5/ UART6/ UART7. Arduino library Serial.h. The

UART receive and transmit buffer is 64 bytes.

TH244A001_UserGuide

megawin Version: 0.40 51

Support baud rate: 1200bps, 2400bps, 4800bps, 9600bps, 19200bps,

38400bps, 57600bps, and 115200bps. Default 9600bps

MG32F02U128AD64

LQFP64 pin No.

MG32F02U128AD64

Pin name

Arduino

Pin name

Initialization UART

function
UART No. remark

18 PB8 NA

Serial.begin(baud) UART0

UART0_TX

download code only

19 PB9 NA
UART0_RX

download code only

35 PC9/RXD1 0
Serial1.begin(baud) UART1

UART1_RX

34 PC8/TXD1 1 UART1_TX

17 PB7 24
Serial2.begin(baud) UART2

UART2_RX

16 PB6 25 UART2_TX

23 PB13 26
Serial4.begin(baud) UART4

UART4_RX

24 PB14 27 UART4_TX

25 PB15 28
Serial5.begin(baud) UART5

UART5_RX

22 PB12 29 UART5_TX

11 PB1 30
Serial6.begin(baud) UART6

UART6_RX

10 PB0 31 UART6_TX

13 MOSI/PB3 20

Serial7.begin(baud) UART7

UART7_RX multiplexed

with IIC0_SCL

12 SCK/PB2 21
UART7_TX multiplexed

with IIC0_SDA

TH244A001_UserGuide

52 Version: 0.40 megawin

Enabling and Disabling Serial Ports

The board supports 7 serial ports, all of which are enabled by default, and the speed

is 9600bps by default.

In order to save the initialization of the serial port transceiver buffer occupies SRAM,

when you do not need the serial port, you can modify the macro definition in

pins_arduino.h to disable some of the serial ports. The method of disabling is as

follows:

Under the path of Arduino (decided according to the local computer, x.x.x

represents the actual version number used)

......\Arduino15\packages\megawin\hardware\MG32x02z\x.x.x\variants\TH244A001,

open the pins_arduino.h file in the following section:

By default UART0, UART1/2/4/5/6/7 are enabled.

If you need to disable a serial port, just comment out this line. For example, if you

only want to keep UART0 and UART1, but don't need the other ports for

TH244A001_UserGuide

megawin Version: 0.40 53

development, you can set the following settings to disable all the ports except

UART0 and UART1, and save the file. After that, when you use Arduino IDE to

compile the project, you will no longer initialize the disabled serial ports.

Common use functions

Function: Serial.begin (baud); enable UART ()

Serialx.begin(baud) x:1,2,4,5,6,7

Baud means transmit binary bits per second. For example, Baud rate 9600

means 9600 means that 9,600 binary bits can be transmitted per second, which is

9,600/8 = 1,200 bytes

Function: Serial.println (); Serial.print (); prints information as a string

TH244A001_UserGuide

54 Version: 0.40 megawin

Function: Serial.available (); gets the number of bytes read on the Serial port. In

particular, the data that received and is stored in the receive buffer. Generally used

with Serial.read ();

Function: Serial.read (); read UART receive buffer, returning 1 byte at a time. Need

to use with Serial.available () to read all data from receive buffer;

Function: Serial.Write (); Write data to UART

Note: Difference between Serial.print () and Serial.write ()

Serial.print () sends characters; Serial.println () sends Enter key after finish

sending characters;

Serial.write () sends byte;

Serial.println (int 97) will output 97 while Serial.Write (int 97) output ASCII

97, which is a letter ‘a’

See UART for details.

10.2. IIC

TH244A001 provides 2 channels IIC. TH244A001 supports IIC master and

slave mode. Arduino library Wire.h.

TH244A001 acted as master and using Wire.h to communicate with other

devices. The IIC speed on TH244A001 is 100 KHz by default. It can be set to

400 KHz or 1MHz.

TH244A001_UserGuide

megawin Version: 0.40 55

There is necessary to add pull-up resistors on external IIC devices to

ensure stable communication.

Users can use Arduino library function in Wire.h to read/write from/to

devices. Users can also design their own functions according to their specific

needs to achieve more flexible communication requirements.

TH244A001_UserGuide

56 Version: 0.40 megawin

MG32F02U128AD64

LQFP64 pin No.

MG32F02U128AD64

Pin name

Arduino

Pin name

Initialization

functions

IIC

index
IIC No.

13 MOSI/PB3 20

Wire.begin() IIC0

IIC0_SCL multiplexed with

UART7_RX

12 SCK/PB2 21
IIC0_SDA multiplexed with

UART7_TX

36 PC10/SCL1 23
Wire1.begin() IIC1

IIC1_SCL

37 PC11/SDA1 22 IIC1_SDA

Wire common use functions Comment

Wire.begin() ；

Wire.begin(address)
Initial IIC

Wire.onReceive(receiveEvent)

IIC event. Slave request master to send

data

Master writes and sends, slave reads and

receives

Wire.onRequest(requestEvent)

IIC event. Master request slave to send

data

Master reads and receives, slave writes and

sends

Wire.requestFrom(address,quantity)

Used with Wire.onRequest(requestEvent).

Master request specific slave to send

specific length data

TH244A001_UserGuide

megawin Version: 0.40 57

Wire.available()

After master used Wire.requestFrom(),

master can use Wire.available() to receive

length of the receive buffer; Using

Wire.read（） to read out data, the returning

value of Wire.available（）will be decreased;

Slave uses Wire.onReceive(receiveEvent) to

send data, slave can use Wire.available() to

receive length of the receive buffer; Using

Wire.read（） to read out data, the returning

value of Wire.available（）will be decreased;

Wire.read()

Master or slave can use Wire.read() to read

out data byte-by-byte after received data;

Generally used with Wire.available（）;

Wire.onRequest(requestEvent)，

Wire.requestFrom(address,quantity) ，Wire.available()，Wire.read()

Generally, master will use these functions to request slave data;

Wire.beginTransmission(address)

Send a START character to send buffer, and

specifies the address of the slave to receive

data. Usually used with Wire.write()

TH244A001_UserGuide

58 Version: 0.40 megawin

Wire.write(value)

Wire.write(string)

Wire.write(data, length)

Send data to the send buffer, can be a

string, number, or specify the data length.

Wire.endTransmission()

Wire.endTransmission(stop)

Complete the transfer process from master

to slave.

Ending the process started by

Wire.endTransmission(), and Sent by

Wire.write().

Master send is generally performed using the following functions in sequence:

Wire.beginTransmission(address)，Wire.write()，Wire.endTransmission()

Refer to the Arduino official for more instructions on Wire:

Wire - Arduino Reference

https://www.arduino.cc/reference/en/language/functions/communication/wire/

See IIC for details.

10.3. SPI

TH244A001 provides 1 channel SPI master by using SPI.h.

SPI usually used in SPI Flash and SPI LCD. Users can use Arduino library

functions to control. SPI maximum speed is 18 Mbps.

MG32F02U128AD64

LQFP64 pin No.

MG32F02U128AD64

Pin name
Arduino Pin name

Initialization

function

51 NSS/PD9 10

https://www.arduino.cc/reference/en/language/functions/communication/wire/
https://www.arduino.cc/reference/en/language/functions/communication/wire/

TH244A001_UserGuide

megawin Version: 0.40 59

44 MOSI/PD2 11

SPI.begin() 49 MISO/PD7 12

50 SPI0_CLK/PD8 13

There are 2 transfer orders on SPI: MSB first and LSB first:

 LSBFIRST：least significant bit first means that the least significant bit of

binary data is transmitted or received first

 MSBFIRST : most significant bit first means that the most significant bit of

binary data is transmitted or received first

Transmit and receive mode must be consistent. For example, master

transmit data of MSBFIRST, slave should also receive data of MSBFIRST.

SPI provides transfer mode: MODE0/1/2/3, there are differences in SCLK and

sampling timing among these 4 modes.

SCLK idle state is determined by CPOL (Clock Polarity):

 When CPOL is 0, the level when the clock is idle is low;

 When CPOL is 1, the level when the clock is idle is high;

Sampling time is determined by CPHA (clock phase):

 When CPHA is 0, data sampling on leading edge;

 When CPHA is 1, data sampling on trailing edge;

CPOL CPHA Mode

TH244A001_UserGuide

60 Version: 0.40 megawin

0 0 MODE0

0 1 MODE1

1 0 MODE2

1 1 MODE3

Users need to ensure the specifications of the slave, and use the

mode that master and slave supported.

Common use functions:

SPI.begin()
Enable/Disable Bus function

SPI.end()

SPI.beginTransaction() Enable/Disable Bus function with SPI

configuration SPI. endTransaction（）

SPISettings

作为 SPI.beginTransaction()的参数使用

Setting SPI configuration, such as: speed and

MSB/LSB and transfer mode.

SPI.transfer() Data transfer function

SPI.setClockDivider(SPI_CLOCK_DIVx)

 SPI_CLOCK_DIV2

 SPI_CLOCK_DIV4

 SPI_CLOCK_DIV8

Setting SPI clock, divided by CPU clock

(36MHz).

Usually it is no need to be configured that the

clock is 18 MHz

TH244A001_UserGuide

megawin Version: 0.40 61

 SPI_CLOCK_DIV16

 SPI_CLOCK_DIV32

 SPI_CLOCK_DIV64

 SPI_CLOCK_DIV128

Seed SPI for details.

Refer to the Arduino official for more instructions on SPI.

SPI - Arduino Reference

https://www.arduino.cc/reference/en/language/functions/communication/spi/

https://www.arduino.cc/reference/en/language/functions/communication/spi/
https://www.arduino.cc/reference/en/language/functions/communication/spi/

TH244A001_UserGuide

62 Version: 0.40 megawin

11. USB

TH244A001 provides two USB interface (Type-C). USB1 is specially used for

debugging and downloading programs; USB2 can be used for device, connected to

the PC as a Mouse or Keyboard

11.1. USB1

USB1 is used as a debug and download port. Use a USB A TO C cable, or USB

3.1 C TO C cable connected to the PC. USB1 is specially used for debugging and

downloading programs. PC will identify the virtual com port, Arduino IDE will

download programs or transfer data through com port.

USB A TO C cable USB 3.1 C TO C cable USB1 interface for download programs

TH244A001_UserGuide

megawin Version: 0.40 63

Must include USB2.0 signal

(DP/DM)

Not actually use USB3.1 signal,

only use USB2.0 signal

(DP/DM)

11.2. USB2

TH244A001 USB2 acted as USB device port. Users can initialize TH244A001 as

a native USB HID Keyboard or native USB HID Mouse by using Keyboard.begin () or

Mouse.begin ().

Through Arduino Keyboard.h to process keyboard input.

Through Arduino Mouse.h, users can easily process mouse by functions(), for

example, defining five keys to represent the movement and click, then users can

simulate the application of mouse movement and click and long press. Mainly using

digitalRead () to read keys state. Users can also use joystick to process the mouse

movement and click. (ADC detect joystick voltage to sense the position).

TH244A001_UserGuide

64 Version: 0.40 megawin

USB2 as device port, acted

as a mouse or keyboard

MG32F02U128 USB as a device

 USB2.0 full speed

▬ Compliant with USB specification v1.1/2.0

 Supports USB suspend/resume and remote wake-up

 Support 8 configurable endpoints

▬ Each endpoint support flexible In, Out, simultaneous In and Out

operations

▬ Support 7 configurable endpoints with relocated address value

except endpoint-0

▬ Support independently receive and transmit buffer with separated

start address for each endpoint

▬ Support double buffer mode for each endpoint independently

 Support control transfer for endpoint 0

 Support interrupt, bulk and isochronous transfer for all endpoints except

endpoint-0

 Supports USB SRAM size 512 bytes shared for all endpoints

 Supports USB 2.0 power management

TH244A001_UserGuide

megawin Version: 0.40 65

 Received and transmitted data are buffered with DMA capability for

EP3,4

TH244A001 USB2 common use functions

Native USB HID Mouse

usually has three

buttons

 MOUSE_LEFT (default)

left key

 MOUSE_RIGHT

right key

 MOUSE_MIDDLE

middle key

Mouse.begin () Enable mouse

Mouse.end () Disable mouse

Mouse.click (); Mouse.click (button) mouse click event

Mouse.press (); Mouse.press (button) long press mouse

button

Mouse.release (), Mouse.release (button) Release mouse

button

Mouse.isPressed (), Mouse.isPressed

(button)

Mouse button

state detection

Mouse.move(x，y，wheel) Mouse movement

event

Native USB HID Keyboard

Keyboard.begin () Enable keyboard

Keyboard.end () Disable keyboard

Keyboard.press () Long press

keyboard button

Keyboard.release ()

Keyboard.releaseAll ()

Release button

Release all buttons

https://seagochen.blog.csdn.net/article/details/116503460#_Mouseclick_243
https://seagochen.blog.csdn.net/article/details/116503460#_Mouseclick_243

TH244A001_UserGuide

66 Version: 0.40 megawin

Keyboard.print ()

Keyboard.println ()

Print event

Print event with

ENTER

Keyboard.write () Send a single tap

instruction

See USB for details.

TH244A001_UserGuide

megawin Version: 0.40 67

12. RTC

Arduino does not provide standard function about RTC. TH244A001 development

kit provides a class MG32x02z_RTC, users can use the RTC as follows. Because RTC

depends on the TH244A001 to run, when the power is off, RTC will stop. After the

power is turned back on, the RTC needs to be reinitialized.

TH244A001 development kit provides a class MG32x02z_RTC to use the RTC

functions. Generally enable the RTC, and then set the time and date. Read out the

time information for needs.

When using RTC, should be done in two parts: initializing RTC and read time

information.

Common use functions：

Initializing RTC:

/* This part of the initialization usually goes in setup */

Rtc.begin (); //Enable RTC

Rtc.setDate (day， month， year); //Set date

Rtc.setTime (hour， minute， sec); //Set time

Read time information：

/*used as requirement*/

Rtc.getHour (); //get the current hour

Rtc.getMinute (); // get the current minute

TH244A001_UserGuide

68 Version: 0.40 megawin

Rtc.getSecond (); // get the current second

Rtc.getDay (); // get the current date

Rtc.getMonth (); // get the current month

Rtc.getYear (); // get the current year

See RTC for details.

TH244A001_UserGuide

megawin Version: 0.40 69

13. SLEEP/STOP Mode

The Megawin M0 MCU MG32F02U128's power controller supports a total of

three power operation modes: ON, SLEEP, and STOP. Two of the power-down

modes are SLEEP mode and STOP mode. The power-down modes can reduce the

power consumption of the chip and provide a variety of power-saving solutions

for the chip application. Arduino development kits since version 2.2.0 support the

power-down modes for use in the Arduino IDE.

 ON mode：In ON mode, the CPU can run at full speed, and all

peripherals can work normally at full power. At the same time, these

modules can be enabled and disabled independently to reduce power

consumption.

 SLEEP mode: In SLEEP mode, only the CPU will be frozen, and all

peripherals can be set to continue working or sleep. In this mode, the

chip can be woken up by an associated interrupt or event.

 STOP Mode: STOP mode provides the lowest power consumption, and

differs from SLEEP mode in that the CPU enters deep sleep mode and all

peripherals are disabled except for some special modules or devices.

These special modules or devices can be set to continue to work or not

in STOP mode, these special modules are IWDT, RTC, CMP, LVR, BOD0,

BOD1, BOD2, and the internal voltage regulator will also run in low

TH244A001_UserGuide

70 Version: 0.40 megawin

power mode. In this mode, the chip can be woken up by some external

input lines (GPIO) and some event detection.

Note: The development kit example program is designed for STOP

mode and SLEEP mode wake-up, currently only external pin interrupt

wake-up and IWDT (open door dog wake-up, using ILRCO 32KHz as

a clock) examples are designed.

Example program description

example program mode Basic instructions

idleWakePeriodic.ino STOP

Enter STOP mode for a sustained

period of time and wake up

automatically

TH244A001_UserGuide

megawin Version: 0.40 71

powerDownWakeExternalInterrupt.ino STOP
Enter STOP mode and wake up via

external interrupt

powerDownWakePeriodic.ino STOP
Enter STOP mode, wake up via

IWDT watchdog

sleepWakeLongTime.ino STOP
Enter STOP mode, wake up via

IWDT watchdog

powerStandbyWakeExternalInterrupt.ino SLEEP
Enter SLEEP mode and wake up via

external interrupt

powerStandbyWakePeriodic.ino SLEEP
Enter SLEEP mode, wake up via

IWDT watchdog

example program mode Default optional instruction

idleWakePeriodic.ino STOP

ADC_OFF

BOD_OFF

USB_OFF

Actual

operation is

only IWDT, RTC,

plus IO

interrupt for

wakeups

powerDownWakeExternalInterrupt.ino STOP

ADC_OFF

BOD_OFF

USB_OFF

ADC_OFF

BOD_OFF

USB_OFF

In addition to

the optional

modules, the

TH244A001_UserGuide

72 Version: 0.40 megawin

only practical

operation is

IWDT, RTC, plus

IO interrupts

for wake-up.

powerDownWakePeriodic.ino STOP

ADC_OFF

BOD_OFF

USB_OFF

ADC_OFF

BOD_OFF

USB_OFF

In addition to

the optional

modules, the

only practical

operation is

IWDT, RTC, plus

IO interrupts

for wake-up.

sleepWakeLongTime.ino STOP

ADC_OFF

BOD_OFF

USB_OFF

ADC_OFF

BOD_OFF

USB_OFF

In addition to

the optional

modules, the

only practical

operation is

IWDT, RTC, plus

IO interrupts

for wake-up.

TH244A001_UserGuide

megawin Version: 0.40 73

powerStandbyWakeExternalInterrupt.ino SLEEP

ADC_OFF

USB_OFF

SYS_TICK

ADC_OFF

USB_OFF

In SLEEP mode,

practically all

modules are in

working state

and

theoretically all

modules can be

woken up

powerStandbyWakePeriodic.ino SLEEP

ADC_OFF

USB_OFF

SYS_TICK

ADC_OFF

USB_OFF

In SLEEP mode,

practically all

modules are in

working state

and

theoretically all

modules can be

woken up

To use these features, you must add the LowPower.h

#include "LowPower.h"

See Common Functions and Basic Usage SLEEP/STOP mode for details.

TH244A001_UserGuide

74 Version: 0.40 megawin

14. IWDT

14.1. Independent Watchdog Timer

When the watchdog timer is enabled, software needs to always reset the timer

before the timer times out. When the watchdog timer is reset, the timer will reload

the 0xFF value and start timing again. If the chip is out of control due to

tampering, the firmware may fail to reset the timer and cause the timer to time

out, which will cause the IWDT to generate a reset event and send it to the Reset

Source Controller (RST) to be reset as a hot reset or cold reset.

It is also possible to apply wdt_disableRST () to set the watchdog interrupt not to

perform a system reset, but to execute the dedicated interrupt function ISR

(WDT_vect) {}.

The development kit supports waking up or resetting the system via the IWDT in

SLEEP or STOP mode.

IWDT Timing is based on ILRCO 32KHz。Support the following time

constants.

SLEEP_15MS = WDTO_15MS, // watchdog timer 15ms timeout

 SLEEP_30MS = WDTO_30MS, // watchdog timer 30ms timeout

 SLEEP_60MS = WDTO_60MS, // watchdog timer 60ms timeout

 SLEEP_120MS = WDTO_120MS, // watchdog timer 120ms timeout

 SLEEP_250MS = WDTO_250MS, // watchdog timer 250ms timeout

 SLEEP_500MS = WDTO_500MS, // watchdog timer 500ms timeout

TH244A001_UserGuide

megawin Version: 0.40 75

 SLEEP_1S = WDTO_1S, // watchdog timer 1s timeout

 SLEEP_2S = WDTO_2S, // watchdog timer 2s timeout

 SLEEP_4S = WDTO_4S, // watchdog timer 4s timeout

 SLEEP_8S = WDTO_8S, // watchdog timer 8s timeout

14.2. IWDT dedicated interrupt

ISR (WDT_vect)

{

 // do anything

 wdt_reset (); //Feed the dog. Reset the timer.

}

14.3. IWDT library main usage

Main usage of IWDT library based on Megawin MG32F02U128 design:

 wdt_disableRST();//disable IWDT interrupt reset system function, generally used

in combination with ISR(WDT_vect){}.

 wdt_enableRST(); //Enable IWDT interrupt reset system function, feed the dog

on time, when the MCU system program running or dead, can not feed the dog, to

achieve the use of reset system.

 wdt_enable(WDTO_4S);//start the watchdog function, timer timeout for

WDT0_4S, that is, 4s

 wdt_disable() //disable watchdog function

 wdt_reset(); // feed the dog, beyond the timeout, no feed the dog, it will enter

TH244A001_UserGuide

76 Version: 0.40 megawin

the IWDT exclusive interrupt ISR(WDT_vect){} or RESET MCU

See Common Functions and Basic Usage for details IWDT.

15. Timer interrupt-TimerOne

15.1. TimerOne(introduce)
TimerOne library is to use MCU internal timer to realize flexible time

interval control. Timer interrupt TimerOne library is supported from

development kit 2.3.0. The basic functions and usage are the same way as

Arduino's current platform. The library file is only for MG32F02U128 platform-

TH244A001_UserGuide

megawin Version: 0.40 77

TH244A001.

The TimerOne library supports the setting of PWM signal output from

D42/D43. When TimerOne is used, the PWM function of D10/D11 cannot be

used.

TimerOne Library support for interrupt setup interrupt functions。

sample program：

15.2. Timer One library control output PWM

const int pin_PWM = 43; // Setting definition needs to set the output pin

of PWM, only 42 and 43 can be used; no need to output PWM, can not be set.

Timer1.initialize (timeout); //unit us, timeout=40 us, it means PWM

TH244A001_UserGuide

78 Version: 0.40 megawin

frequency is 25 KHz;

Timer1.pwm (pin_PWM, duty); //this time the duty is 0~1023. Actually

corresponds to the positive duty cycle of 0~100%.

15.3. TimerOne library timing interrupt

Timer1.initialize(timeout); // unit us, timeout=1000000us , initialize the

timer for 1s; here the time can support a maximum of 10s; generally

recommended for use as an interrupt, here the time is set to a maximum of 1s

to ensure time accuracy, the need for a larger time can be carried out using cycle

counting;

Timer1.attachInterrupt (timer1_ISR); //Set the interrupt callback function

void timer1_ISR () {} //Timer interrupt handling function

To use these functions, you must load the TimerOne.h library

#include <TimerOne.h>

See TimerOne for more details on common functions and basic usage.

16. Timer interrupt Mstimer2

MsTimer2 library is to use MCU internal timer to realize flexible time interval

control. Timer interrupt Mstimer2 library is supported from development kit

2.3.0. The basic functions and usage are the same way as Arduino's current

platform. The library file only applies to MG32F02U128 platform-TH244A001.

When using MsTimer2 library timing interrupt, the PWM function of D3/D6

TH244A001_UserGuide

megawin Version: 0.40 79

can not be used.

Library Function

MsTimer2:set (unsigned long ms, void (*f) ());

//Set the interval of timing interrupt and the interrupt service program to

be called.

//ms indicates the length of the interval of the timing time in ms; //void (*f).

//void (*f) () indicates the name of the called interrupt service program

function.

MsTimer2::start (); //start timer interrupt

MsTimer2::stop (); //stop the timer interrupt, you can restart the interrupt at

any time with the start method.

void (*f) () {} //Timer interrupt handler function

TH244A001_UserGuide

80 Version: 0.40 megawin

To use these functions, the MsTimer2.h library must be loaded.

#include <MsTimer2.h

See MsTimer2 for more details on common functions and basic usage.

TH244A001_UserGuide

megawin Version: 0.40 81

17. EEPROM

Megawin-MG32x02z-TH244A001-2.3.0 has an EEPROM that can be

powered down without losing the stored data. The TH244A001 development kit

has a design that divides the flash memory to emulate the Arduino's EEPROM

because the emulated EEPROM will open up the same amount of space in the

SRAM after initialization. The simulated EEPROM will open a space of the same

size in SRAM after initialization. In order to utilize the limited SRAM memory

efficiently, the TH244A001 uses the default 512 bytes Flash emulation as the

EEPROM, and developers can manually modify the EEPROM.h file under the

installation path of the development kit to realize it if they need more space.

The EEPROM.h in the development kit only applies to the Megawin

MG32F02U128 TH244A001 platform.

In particular, the flash memory and EEPROM support unlimited reading of

their data, but limit the number of data write operations.

The EEPROM has a limit on the number of write operations, so be careful

not to place write operations in loops or other cyclic execution functions.

TH244A001_UserGuide

82 Version: 0.40 megawin

An EEPROMClass object named EEPROM has been defined by default in the

EEPROM.h library. The basic way to use it is as follows:

 Load #include <EEPROM.h> to use EEPROM;

The EEPROM library already has an object named EEPROM defined by

default, with a default size of 512 bytes. You can just use this object directly. If

you need to define an object with another name, you can use EEPROMClass to

define it.

The default size of the defined EEPROM object is 512 bytes, and the user

operable address is 0~511.

By default, when using EEPROM:

 first load EEPROM.begin (size), size is the maximum address of the data

byte to be read or written + 1, taking value 1~512;

 Use EEPROM.write (addr, data) to write data, parameters are address &

TH244A001_UserGuide

megawin Version: 0.40 83

single byte data respectively;

 After all write data, need to commit by EEPROM.commit () to save data

from staging area to flash to realize power-down protection.

 Use EEPROM.read (addr) to read single-byte data at the specified

address;

 Modify EEPROM capacity

If there is a need for larger capacity, users can modify the macros in the

library EEPROM.h to realize it. Note that this macro can no longer be defined in

the Arduino IDE ino project file.

Under the path of Arduino (depending on the local computer, x.x.x

represents the actual version number used)

......\Arduino15\packages\megawin\hardware\MG32x02z\x.x.x\libraris\EEPR

OM\src to modify the EEPROM_SIZE macro parameter in EEPROM.h.

Support selectable from 512 bytes to 8K bytes, default setting is 512 bytes.

//===========Support EEPROM_SIZE list begin============

#define EEPROM_SIZE 512 //default set EEPROM 0.5K 512 bytes

//#define EEPROM_SIZE 1024 //set EEPROM 1K 1024 bytes

//#define EEPROM_SIZE 1536 //set EEPROM 1.5K 1536 bytes

//#define EEPROM_SIZE 2048 //set EEPROM 2K 2048 bytes

//#define EEPROM_SIZE 2560 //set EEPROM 2.5K 2560 bytes

//#define EEPROM_SIZE 3072 //set EEPROM 3K 3072 bytes

TH244A001_UserGuide

84 Version: 0.40 megawin

//#define EEPROM_SIZE 3584 //set EEPROM 3.5K 3584 bytes

//#define EEPROM_SIZE 4096 //set EEPROM 4K 4096 bytes

//#define EEPROM_SIZE 4608 //set EEPROM 4.5K 4608 bytes

//#define EEPROM_SIZE 5120 //set EEPROM 5K 5120 bytes

//#define EEPROM_SIZE 5632 //set EEPROM 5.5K 5632 bytes

//#define EEPROM_SIZE 6144 //set EEPROM 6K 6144 bytes

//#define EEPROM_SIZE 6656 //set EEPROM 6.5K 6656 bytes

//#define EEPROM_SIZE 7168 //set EEPROM 7K 7168 bytes

//#define EEPROM_SIZE 7680 //set EEPROM 7.5K 7680 bytes

//#define EEPROM_SIZE 8192 //set EEPROM 8K 8192 bytes

//===========Support EEPROM_SIZE list end============

Commonly used functions:

EEPROM.begin (Size); //apply the size of the read/write operation, Size must

be smaller than the size defined by EEPROM_SIZE.

Size must be smaller than the size defined by EEPROM_SIZE. For example,

the default EEPROM_SIZE=512, then here Size is 1~512.

When you need to write or read a single byte:

EEPROM.write (address, data) //default EEPROM_SIZE=512, the available

address is 0~511. Write method is to store bytes, data can only be 0x00~0xFF,

used to store the read data;

TH244A001_UserGuide

megawin Version: 0.40 85

EEPROM.commit (); //Enable to save data from SRAM to flash to realize

power-down protection.

EEPROM.read (address) //read the specified address of the data, read ()

method is to read byte units

When you need to write or read multiple bytes, such as floating-point data

or shaping data or other data structures (need to store data in multiple bytes),

you can use the following methods to read and write:

EEPROM.put (address, data) //write data to the specified address, data is the

data to be stored

EEPROM.get (address, data) //read the data at the specified address, data is

the data to be stored.

To use these functions, the EEPROM.h library must be loaded.

#include <EEPROM.h

For more details, see Common Functions and Basic Usage of EEPROM.

TH244A001_UserGuide

86 Version: 0.40 megawin

18. Multi-segment digital tube library display

TM1637Display.h or ShiftRegister74HC595.h must be loaded to realize the

display control of digital tube.

#include <TM1637Display.h> or #include <ShiftRegister74HC595.h>.

The basic operation can be referred to the example.

TH244A001_UserGuide

megawin Version: 0.40 87

19. Other Important Notes

19.1. AREF (CN3)

Analog input reference voltage. Using J2 to switch VDD or AREF as VREF +

input. Users can refer to the ADC part specifications. analogReference() is used

to select whether the external VREF+ or IVR24 is the reference voltage. See the

ADC section for details.

AREF is another input as VREF+. Users need to install 2.54 mm 2 pin jumper

J2 to use AREF

19.2. RESET PIN (CN1-RESET)

Connect to external modules’RESET signal to process external module

reset MG32F02U128. It is the same as press RESET KEY on TH244A001.

RESET located at CN1, used to be

connected to external signal to reset

MG32F02U128.

TH244A001_UserGuide

88 Version: 0.40 megawin

19.3. RESET KEY: SW2

Press RESET KEY SW2 to reset MG32F02U. SW2 is a reset signal which

connected to PC6 RSTN pin. When SW2 is pressed, MCU will be reset.

Press the SW2, RESET signal is pulled low and generate a reset signal.

Pressed: LOW level; No pressed:HIGH level

19.4. USER KEY SW3

Connected to 46, users can use this button to do a button function. Hardware has

been designed a pull-up resistor, users can using 46 to read the button state.

Users can program the button SW3, using Arduino function

pinMode(46，INPUT) to set the pin to digital input, and using

digitalRead(46) to read the state.

Pressed: LOW level; No pressed:HIGH level

TH244A001_UserGuide

megawin Version: 0.40 89

19.5. L13: LED1

Pin 13, macro defined as LED_BUILTIN. Users can use 13 or LED_BUILTIN in

code; it is connected to a red LED named LED1 through a comparator.

Pin 13 can also be configured as SCLK for SPI. op-amps are utilized in the

line to minimize the impact of the LED1 load on the SPI function of pin 13.

When pin 13 is high level, LED1 turn on while low level to turn off.

Factory default program: Red LED1 flashes with ON 1s, OFF 1s

19.6. TXLED/RXLED

When upgrading MG32F02U128 AP code through PC, YELLOW LED3 /ORANGE

LED4 keep flashing, upgrade is complete, LED3/4 will be turn off.

TH244A001_UserGuide

90 Version: 0.40 megawin

19.7. MCU power switch SW1 / Power ON LED2

When users need to power off or repower MCU, can switch SW1. Green LED2

indicated whether MG32F02U is power on or off.

19.8. LED6/7/8 indicated MLink connection state

between USB1 and PC

GREEN LED7/ORANGE LED8 is turned on if the connection of USB1 is normal while

RED LED6 is turned on if connection abnormal.

TH244A001_UserGuide

megawin Version: 0.40 91

19.9. IOREF

The pin connected to Arduino MCU MG32F02U reference voltage. Usually used

to read by Arduino extension board and choose appropriate operate voltage

(which is the function of extension board), or provides level shift of 3.3V or 5V.

IOREF voltage is the same as J1 selected voltage 5V or 3.3V.

TH244A001_UserGuide

92 Version: 0.40 megawin

19.10. Development kit path management

Third party development kit should be placed in the specified path to make sure

Arduino IDE can identify and load correctly.

Commonly used Arduino AVR development boards, such as UNO , MEGA ,

NANO and other official AVR development boards, will not automatically download

the official development kit when installing Arduino IDE2.x.x , and need to manually

download and install (Arduino IDE1.8.x version will be downloaded and installed by

default). Refer to TH244A001_UserManual- Official AVR development kit

installation for details.

The development of the third party development board, such as STM32 Nucleo

Nu_edu_Arduino, Megawin TH244A001, can not direct identified by IDE, users need

to install special development kit. The unofficial development board is called the

development board contributed by the third party, and the development kit needs

to be setup and installed manually. Refer to TH244A001_UserManual- third party

development board’s development boards installation and update for details.

TH244A001_UserGuide

megawin Version: 0.40 93

19.11. Virtual com setting and program download

TH244A001 use MG84FG516 to download program via USB1. Configure

MG84FG516 VCP mode to enable virtual com port (Megawin provides SHA-1

and SHA-2 drivers). Short J3, is to enable virtual com VCP.

MG32F02U128 UART0 is connected to MG84FG516 to do program

download and Arduino IDE com debug. Arduino IDE provides a serial monitor,

which can transfer and receive data through UART to be the main mean of

debugging. TH244A001 RX TX LED will keep flashing when the program is

downloading through ARDUINO IDE.

Serial monitor’s main function is to use print functions like

Serial.printIn (). Print special definition of information on PC through UART0

to achieve debugging.

TH244A001_UserGuide

94 Version: 0.40 megawin

TX LED/RX LED blinks during burning.

MG84FG516 MCU through SWD to communicate with MG32F02U128, can

achieve real-time debugging (Arduino IDE2.X is only support the official

development board). TH244A001 as a third party development board, cannot

directly use Arduino IDE2.X to do SWD debugging. But, TH244A001 still can

use other IDE to achieve SWD debugging.

TH244A001_UserGuide

megawin Version: 0.40 95

20. TH244A001 reset

1. When Arduino IDE is uploading program, TH244A001 will be reset;

2. Press SW2（RESET） button, TH244A001 will be reset. Refer to

RESET.

3. Repower TH244A001, TH244A001 will be reset;

4. Send Low level signal to CN1 RESET pin, TH244A001 will be reset, it

is the same as 2;

TH244A001_UserGuide

96 Version: 0.40 megawin

21. Common use function and basic

usage

21.1. GPIO read and write control

Digital ports read/write handler.

Common use functions, refer to Arduino official instructions.

Function: pinMode(pin，MODE)

Comment: Set pin MODE to OUTPUT (output mode), INPUT (input mode),

INPUT_PULLUP (input mode with pull-up resistor)

Reference: https://www.arduino.cc/reference/en/language/functions/digital-

io/pinmode/

Function: digitalWrite(pin， value)

Comment: Write level to pin; value: HIGH (voltage: VDD), LOW (voltage: 0)

Reference: https://www.arduino.cc/reference/en/language/functions/digital-

io/digitalwrite/

Function: digitalRead (pin)

Comment: Read pin level state; return value is HIGH or LOW

Reference: https://www.arduino.cc/reference/en/language/functions/digital-

io/digitalread/

TH244A001_UserGuide

megawin Version: 0.40 97

21.2. Delay function

Function: delay (ms)

Comment: Specified delay in milliseconds

delay (ms)

Function: delayMicroseconds (us)

Comment: Specified delay in microseconds

delay (), delayMicroseconds (us) will occupy MCU resources and block

MCU execution.

Example 1: Using delay to do LED flash

//LED flashing control by delay

void setup () {

 // Initialize 13 pin as output, 13 macro define is LED_BUILTIN

 pinMode (LED_BUILTIN, OUTPUT);

}

void loop () {

 digitalWrite (LED_BUILTIN, HIGH); // Output high, turn on LED

 delay (1000); //Keep high for 1s

 digitalWrite (LED_BUILTIN, LOW); // Output low, turn off LED

TH244A001_UserGuide

98 Version: 0.40 megawin

 delay (1000); //Keep low for 1s

}

21.3. Timer

Data of millis () or micros () is large and the variable is defined as unsigned

long. In most cases, using the ms level is enough.

Function: millis ()

Comment: Return since TH244A001 to run the current program the number of

milliseconds. Non-blocking programming must. This is the best way to replace delay

().

Function: micros ()

Comment: Return since TH244A001 to run the current program the number of

microseconds. If users need more resolution, micros () can be used.

21.4. PWM

Function: analogWrite(pin， Value)

Comment: Set PWM duty of specified pin. (TH244A001 pin 3, 5, 6, 8, 9, 10, 11

support PWMfunction), default resolution is 8 bit, value can be 0~255 for

duty is 0%~100%;

Example: analogWrite (3, 25) pin 3 output duty 25/255=10%

TH244A001_UserGuide

megawin Version: 0.40 99

 AnalogWrite (10,230) pin 10 output duty 230/255=90%

Reference：

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/

Function: analogWriteFrequency(PWM_FRQ_XX，Fre)

Comment: Configure specified pin PWM frequency. Fre can be 300Hz~5000Hz,

default frequency is 1 KHz.

Beyond the range of values, will be constrained for 300 Hz (less than 300 Hz) or

5000 Hz (above 5000 Hz).

Note：

TH244A001 only pin 3/6, 5/8/9, 10/11 can use this function to set frequency.

3/6(TM20), 5/8/9(TM36) and 10/11(TM26) can configure to different frequency.

Default frequency is 1000Hz;

For example:

Method one

 analogWriteFrequency(PWM_FRQ_D3_D6，Frq) Set 3/6 frequency

 analogWriteFrequency(PWM_FRQ_D5_D8_D9，Frq) Set 5/8/9 frequency

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/

TH244A001_UserGuide

100 Version: 0.40 megawin

 analogWriteFrequency(PWM_FRQ_D10_D11，Frq) Set 10/11 frequency

 analogWriteFrequency(PWM_FRQ_ALL，Frq) Set 3/6, 5/8/9, 10/11 frequency

Example: Set pin 3 output PWM 3 KHz, duty 90%; pin 6 output PWM 3 KHz,

duty 10%

void setup () {

 analogWriteFrequency (PWM_FRQ_D3_D6, 3000); //Set PWM_FRQ_D3_D6

output frequency 3000Hz

}

void loop () {

 analogWrite (3, 230); //Set pin 3 duty 230/255=90%

 analogWrite (6, 25); // Set pin 6 duty 25/255=10%

}

Method two

 analogWriteFrequency(3，Fre) Set pin 3 frequency while pin 6 is also set to

this frequency

 analogWriteFrequency(5，Frq) Set pin 5 frequency while pin 8, 9 is also set

to this frequency

 analogWriteFrequency(10，Frq) Set pin 10 frequency while pin 11 is also set

to this frequency

 analogWriteFrequency(PWM_FRQ_ALL，Frq) Set pin 3/6，5/8/9，10/11 frequency

TH244A001_UserGuide

megawin Version: 0.40 101

Example: Set pin 3 output PWM 3 KHz, duty 90%; pin 6 output PWM 3 KHz,

duty 10%

void setup () {

 analogWriteFrequency (3, 3000); // Set pin 3 frequency while pin 6 is also set to

this frequency

}

void loop () {

 analogWrite (3, 230); // Set pin 3 duty 230/255=90%

 analogWrite (6, 25); // Set pin 6 duty 25/255=10%

}

21.5. DAC

Function: analogWrite(21，Value)

Comment: Write analog value to pin 21. Using this function, pin 21 will be set to

analog output mode. (TH244A001 only pin 21 support DAC output).

DAC resolution is 12 bit, so Value can be set to 0~4095, actual output

voltage is 0~VDD

Example 1:

void setup () {

TH244A001_UserGuide

102 Version: 0.40 megawin

}

void loop () {

 analogWrite (21,3000); //modify different values, output voltage is

3000/4095*VDD

 //When VDD=5V, output voltage 3.6V; when VDD=3.3V, output

voltage 2.38V }

TH244A001_UserGuide

megawin Version: 0.40 103

21.6. ADC

Function: analogRead (pin)

Comment: return value read from analog pin. “pin” is the specified analog

input pin. analogRead (A0). TH244A001 analog pin are A0~A15

A0~A5 corresponding 14~19

A6~A15 corresponding 36~45

Reference:

https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

Example 1: Default resolution is 12 bit; VDD=5V

void setup () {

 Serial.begin (9600); // initialize UART

}

void loop () {

 int sensorValue = analogRead (A0); //read A0 analog input, return

value is ADC value, value range is 0~4096 (12 bit resolution)

 float voltage = sensorValue * (5.0 / 4096.0); //VDD=5V, default 12 bit

resolution, count actual voltage

 Serial.println (voltage); //print data for debug

}

Function: analogReadResolution (res);

https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

TH244A001_UserGuide

104 Version: 0.40 megawin

Comment: Set ADC sampling resolution;

Parameter can be: 8, 10, and 12. Default is 12 bit for compatible with AVR

official board. User can set to others for actual requirement to get higher

precision. Pay special attention to the mapping range when calculating the

actual voltage or using map ().

8 bit 0~255 255 corresponds to the ADC reference voltage, default is

external VDD=5v

10bit 0~1023 1023 corresponds to the ADC reference voltage, default is

external VDD=5v

12bit 0~4095 4095 corresponds to the ADC reference voltage, default is

external VDD=5v

Reference：

https://www.arduino.cc/reference/en/language/functions/zero-due-

mkr-family/analogreadresolution/

Example 2: Set resolution from 12 bit to 10 bit, VDD=5V

void setup () {

 analogReadResolution (12); //Set resolution to 12 bit

 Serial.begin (9600); // initialize UART

}

https://www.arduino.cc/reference/en/language/functions/zero-due-mkr-family/analogreadresolution/
https://www.arduino.cc/reference/en/language/functions/zero-due-mkr-family/analogreadresolution/

TH244A001_UserGuide

megawin Version: 0.40 105

void loop () {

 int sensorValue = analogRead(A0); // read A0 analog input, return

value is ADC value, value range is 0~1023（10 bit resolution）

 float voltage = sensorValue * (5.0 / 1024.0); //VDD=5V, 10 bit resolution, count

actual voltage.

 Serial.println (voltage); // print data for debug

}

Function: analogReference(res); Default is external VREF+, the parameter is

AR_DEFAULT（AR_EXTERNAL）

Comment: Set ADC reference voltage;

Optional parameters are: AR_INTERNAL, AR_EXTERNAL, AR_DEFAULT

（AR_EXTERNAL）

Note: Recommend to use the default external voltage source VREF+ as the

reference voltage without modification.

Function: map (value, fromLow, fromHigh, toLow, toHigh)

Comment: map () usually used with ADC for linear mapping.

Reference:

https://www.arduino.cc/reference/en/language/functions/math/map/

Example 3: Using map () to change ADC data range from 0~5000 of 1000 to

0~255 of 51.

https://www.arduino.cc/reference/en/language/functions/math/map/

TH244A001_UserGuide

106 Version: 0.40 megawin

// change ADC data range from 0~5000 of 1000 to 0~255 of 51

int fromLow = 0;

int fromHigh = 5000;

int toLow = 0;

int toHigh = 255;

int value = 1000;

void setup () {

 Serial.begin (9600); // initialize UART

}

void loop () {

 int x = map(value, fromLow, fromHigh, toLow, toHigh); //Linear mapping：x =

a/(fromHigh-fromLow)*(toHigh-fromLow)

 Serial.println(value); //print raw data range 0~5000 of value = 1000；

 Serial.println(x); //print new data range 0~255 of value x=

1000/(5000-0)*(255-0) =51

 delay (1000); //delay 1s for watching data

}

21.7. UART

UART0 (download programs only)/ UART1/ UART2/ UART4/ UART5/ UART6/

UART7. Using Arduino Serial library to use UART.

TH244A001_UserGuide

megawin Version: 0.40 107

Common use functions:

Function: Serial.begin (baud)

Comment: Initialize UART, set baud rate to 9600, 19200, 115200 and so on.

Default 9600 bps.

Note: The serial port tool need to be set to the same baud rate to be able to

communicate with MCU;

Example 1: Initialize UART

void setup () {

 Serial.begin (9600); //Enable UART, baud rate 9600bps

}

void loop () {}

Function: Serial.println () print with ENTER; Serial.print () print without ENTER

Comment: UART print data for user requirement.

Function: Serial.available ()

Comment: Returning the number of bytes of data received by UART receive

buffer

Function: Serial.read ()

Comment: Read data received from UART, read one byte at a time. Return -1

https://www.arduino.cc/reference/en/language/functions/communication/serial/begin

TH244A001_UserGuide

108 Version: 0.40 megawin

means no received data. Usually used with Serial.available (), using loop function

to read buffer until finish read process.

Example 2: print when UART received data.

// print when UART received data;

void setup () {

 Serial.begin (115200); //Set UART baud rate to 115200

}

void loop () {

 while (Serial.available ()) { // while UART received data, Serial.available ()

return 1 for condition judgment

 char serialData = Serial.read (); // use read function to read data, one byte at

a time

 Serial.println ((char) serialData); // print data which read from UART by read

function

 }

}

Example 3: UART0 received data, send to UART1 print out;

UART1 received data, send to UART0 print out;

//TH244A001 UART0 and UART1

//Serial.begin () initialize UART0, connect to PC;

TH244A001_UserGuide

megawin Version: 0.40 109

//Serial1.begin () initialize UART1, using serial port tool to connect to PC or other

development boards’UART;

//Judge from Serial.available () whether UART0 receive buffer is not empty;

// Judge from Serial1.available () whether UART1 receive buffer is not empty;

// When there is data in the receive buffer, perform the read operation and print it

void setup () {

Serial.begin (9600); // initialize UART0, set baud rate to 9600bps

Serial1.begin (9600); // initialize UART1, set baud rate to 9600bps

}

void loop () {

// read data from UART0; send data to UART1 byte by byte;

if (Serial.available ()) {

int inByte = Serial.read ();

Serial1.println (inByte, DEC);

}

// read data from UART1; send data to UART0 byte by byte;

if (Serial1.available ()) {

int inByte = Serial1.read ();

Serial.println (inByte, DEC);

}

TH244A001_UserGuide

110 Version: 0.40 megawin

}

Function: Serial.write ()

Comment: Print one byte through UART, actually print ASCII code

Example 4: Compare Serial.println () with Serial.write ()

// Compare Serial.println () with Serial.write ()

int num = 65; // define a decimal number

void setup () {

 Serial.begin (115200);

 Serial.println (num); //print character 65

 delay (500);

 Serial.write (num); // Print character A with ASCII 65

 Serial.println (); //Output ENTER

}

void loop () {

}

TH244A001_UserGuide

megawin Version: 0.40 111

Note:

 Serial means UART0

 Serialx means UARTx X : 1, 2, 4, 5, 6, 7

See Arduino official for details:

Serial - Arduino Reference

https://www.arduino.cc/reference/en/language/functions/communication/serial/

21.8. IIC

Generally, the development board is used as the master and the module is used

as the slave.

When there are other development boards or devices as the master, TH244A001

can be added to the bus as a slave.

Wire means IIC0 while Wire1 means IIC1, IIC default clock is 100 KHz.

Function: Wire.begin () and Wire.begin (address)

Comment: Initialize the Wire library and add to the IIC bus. Wire.begin () initialize

to be master while Wire.begin (address) to be slave. These functions can only be

called once which usually placed in setup ();

Parameter:

Address: 7 bit device address(optional), if the parameter is empty, TH244A001 is set

to master in IIC bus, while not empty to be slave in IIC bus;

Function: Wire.onReceive (receiveEvent), Wire is slave;

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/

TH244A001_UserGuide

112 Version: 0.40 megawin

Comment: Slave responds master data. Register receiveEvent, when slave received

master transfer, this function will be called. receiveEvent () should be used with int

parameter (store slave received number of bytes), this function is not return

anything.

Function: Wire.onRequest (requestEvent), Wire is slave;

Comment: master requests slave to send data

When master requests slave to send data, slave set function through onRequest.

Asserted a requestEvent, this function will be called when slave received master data

request. Function requestEvent ()

Function: Wire.requrstFrom (address,quantity) master requests slave data

Wire.requrstFrom (address,quantity,stop) master requests slave data with

STOP character

Comment: master requests slave data, data can be received by master Wire.read ()

or Wire.available ().

Parameter:

address: 7 bit device address

Quantity: number of data (bytes)

stop: bool data, 1: Send STOP and release bus after request finish; 0:

continue sending request

Return value:

Returning the number of data bytes from slave received;

TH244A001_UserGuide

megawin Version: 0.40 113

Function: Wire.beginTransmission (address)

Comment: Master transfer a START to send buffer, and specifies the slave

address to received data.

Parameter:

Address: slave 7 bit address

Return: no return value

Function: Wire.endTransmission () and Wire.endTransmission(stop)

Comment: STOP the slave transfer process which start from

Wire.beginTransmission () and arrange by Wire.write (). Wire.endTransmission ()

can received a bool type variable stop. Value 1: endTransmission () transfer a STOP;

Value 0: transfer a START

Return value

0 success

1 data overflow

2 slave received NACK when transfer address

3 received NACK when transfer data

4 other errors

Function: Wire.write (value)

TH244A001_UserGuide

114 Version: 0.40 megawin

Wire.write (string)

Wire.write (data, length)

Comment: Send data to slave, can be string, number or any other specified

length data

Parameter:

value: value to send

string: pointer of string

data: data array

length: transfer length

Function: Wire.available ()

Comment: After master or slave received data, can use available function to

receive the number of receive buffer data bytes

Function: Wire.read ()

Comment: After master or slave received data, can use Wire.read () to received

data, usually used with Wire.available ();

Example 1: master transfer data, slave received and print

//TH244A001 test IIC0 IIC1 communications

//TH244A001 IIC0 SCL->20; SDA ->21; IIC1 SCL ->23; SDA ->22

//TH244A001 connect 20 to 23; 21 to 22; SDA install a 4.7KOhm pull-up resistor to

VDD (5V or 3.3V)

TH244A001_UserGuide

megawin Version: 0.40 115

//Set TH244A001 IIC0 master, IIC1 slave; master sends specific length data to

slave;

#include <Wire.h>

void setup () {

 Wire.begin (); // initialize IIC0 as master

 Wire1.begin (100); // initialize IIC1 slave ,address is 100; address

must be 7 bit: 0~127.

 Wire1.onReceive (receiveEvent); // regist receive event, receiveEvent () is the

function need to handled by users define;

 Serial.begin (9600); // start UART for output

}

byte x = 0; //range: 0~255

void loop () {

 Wire.beginTransmission (100); // start to transfer data to slave which address is

100;

 Wire.write ("x is "); // transfer 5 bytes character type letters: x, space, i, s,

space.

 Wire.write(x); // transfer one byte, character type

 Wire.endTransmission (); // perform transfer, transfer 6 bytes in total

 x++;

 delay (1000); //send 6 bytes every 1s delay time

TH244A001_UserGuide

116 Version: 0.40 megawin

}

//define receiveEvent ()function, IIC1 received master data, then print out.

void receiveEvent (int howMany) // int howmany muset be defined, howmany

here is actually counted received the number of bytes

{

 Serial.println ("howMany");

 Serial.println (howMany); //print slave received number of bytes, here is 6

bytes.

 while (1 < Wire1.available()) // Wire1.available () check received number of

bytes, which is decremented by 1 each time Wire.read () is executed

 //set Wire1.available ()>1 to print the last byte as a

integer type;

 //or character type number will be recognized as ASCII

letters, not numbers via Serial.println ();

 {

 char c = Wire1.read (); // read one byte of received data

 Serial.print (c); // print one byte of received data

 }

 int x = Wire1.read (); // print the last byte as an integer type

 Serial.println (x); // print integer type

}

TH244A001_UserGuide

megawin Version: 0.40 117

Example 2: master requests specific data from the slave,

master receives the data, and the slave sends the data

// TH244A001 test IIC0 IIC1 communications

//TH244A001 IIC0 SCL->20;SDA ->21;IIC1 SCL ->23;SDA ->22

// TH244A001 connect 20 to 23; 21 to 22; SDA install a 4.7KOhm pull-up resistor

to VDD (5V or 3.3V)

// Set TH244A001 IIC0 master, IIC1 slave; master sends specific length data to

slave;

#include <Wire.h>

void setup () {

 Wire.begin (); // initialize IIC0 as master

 Wire1.begin (2); // initialize IIC2 as slave, address is 2

 Wire1.onRequest (requestEvent); // regist master request slave data event

 Serial.begin (9600); // initialize UART, for print information

}

void loop () {

 Wire.requestFrom (2, 8); // used with master request event in the setup(),

transfer 8 bytes data to address 2 slave.

 while (Wire.available ()) // less than requested, will cause a problem.

TH244A001_UserGuide

118 Version: 0.40 megawin

// Wire.available () returns the number of bytes to receive buffer data and

decreased by reading by Wire.read () until return 0. Here using Wire.available () to

judge whether read operation is finished.

 {

 char c = Wire.read (); // read one byte, and change to character type.

 Serial.print (c); // print character

 }

 Serial.println ();

 Delay (500);

}

//master requests data event function. Slave prepares specific length data for

master to read.

void requestEvent () //

{

 Wire1.write ("hello,TH244A001 "); //Slave transfers data which master

requested.

}

21.9. SPI Master

TH244A001 is only supports SPI master mode. Generally slave are SPI Flash,

SPI sensors or SPI display.

TH244A001_UserGuide

megawin Version: 0.40 119

Function: SPI.begin ()

Comment: Enable and initialize SPI bus, set SCK, MOSI and SS as output, SCK and

MOSI pull low; SS pull high; no return data;

Function: SPI.end ()

Comment: Disable SPI bus, but the pin mode set by initialization will be preserved

so that the bus can be started again at any time. At this point, all devices on the

SPI bus can no longer use the bus. No data is returned;

Function: SPI.beginTransaction（SPISettings(6000000, MSBFIRST, SPI_MODE0)）

Comment: Configure transmission speed, data order and mode, no return data;

Define a SPISettings object, SPISettings object is used to configure SPI port

for the SPI slave device transmission parameters. A single SPISettings object has

speedMaximum dataOrder, dataMode of three parameters.

Example:

SPISettings SlaveA (6000000, MSBFIRST, SPI_MODE0) //Slave A transmission

configuration;

SPI.beginTransaction（SlaveA） // Configure SPI to slave A 's required Settings;

Function: SPI. endTransaction ()

Comment: Disable SPI bus, specifically stop a slave device from using the bus,

generally use this function after disable (pull high a slave device's CS pin) the slave.

This operation does not affect other slave devices communicate with master. No

TH244A001_UserGuide

120 Version: 0.40 megawin

data returned;

Function: SPI.transfer (val); SPI.transfer (val16); SPI.transfer (buffer, size)

Comment: Master transfer data to slave, and received slave data at the same time.

This function returns data.

SPI transmission are sent and received at the same time: received data returned with

receivedVal (or receivedVal16). In the case of a buffer transfer, the received data is

also stored in the buffer.

Parameter:

val: one byte length variable sent by bus

val16: two bytes length variable sent by bus

buffer: data array sent by bus

size: data length to be sent

Function: SPI.setClockDivider (SPI_CLOCK_DIV8)

Comment: Set SPI clock, no return data; SPI_CLOCK_DIV8 means SPI clock set to

CPU clock divided by 8; Generally use default clock does not need to be modified.

21.10. USB

TH244A001 USB2 as device connected to PC, which can be used as a keyboard

TH244A001_UserGuide

megawin Version: 0.40 121

or mouse.

When the USB module is enabled in the program design, the TH244A001 will

be connected to the computer as a keyboard or mouse input.

21.11. USB-mouse

TH244A001 USB2, which can be initialized for use as a mouse. Users can use

the keyboard to simulate the mouse keys, users can also use the joystick to achieve

the mouse movement function.

Requires #include <Mouse.h>

Function: Mouse.begin ()

Comment: Enable USB port as mouse

Function: Mouse.end ()

Comment: Disable mouse

Function: Mouse.click (); Mouse.click (button)

Comment: Mouse click event and release, equivalent to moments of the mouse

click event, such as generally used left-click and right-click event.

Note: Button has three states, which represent the left button, right button and

middle button of the mouse:

 Mouse.click (MOUSE_LEFT) -(default) left-click

 Mouse.click (MOUSE_RIGHT) right-click

TH244A001_UserGuide

122 Version: 0.40 megawin

 Mouse.click (MOUSE_MIDDLE) middle-click

Function: Mouse.press (); Mouse.press (button)

Comment: Long press mouse button (without release). Usually used in time of

long press left button to select or drag. It is usually used with Mouse.move (). Use

Mouse.release () to release.

Note: Button has three states, which represent the left button, right button and

middle button of the mouse:

 Mouse.press (MOUSE_LEFT) -default left button pressed

 Mouse.press (MOUSE_RIGHT) right button pressed

 Mouse.press (MOUSE_MIDDLE) middle button pressed

 Mouse.press (MOUSE_LEFT | MOUSE_RIGHT) left and right button

pressed at the same time

Function: Mouse.release (), Mouse.release (button)

Comment: Mouse button release. Release the button has been long pressed.Used

with Mouse.press ().

Note: Button has three states, which represent the left button, right button and

middle button of the mouse:

 MOUSE_LEFT (default)

 MOUSE_RIGHT

 MOUSE_MIDDLE

Function: Mouse.isPressed (), Mouse.isPressed (button)

TH244A001_UserGuide

megawin Version: 0.40 123

Comment: Detect mouse button state. If a mouse button is pressed or

Mouse.press() has sent a long press command, return ture.

Note: Button has three states, which represent the left button, right button and

middle button of the mouse:

 MOUSE_LEFT (default)

 MOUSE_RIGHT

 MOUSE_MIDDLE

Function: Mouse.move(x，y，wheel)

Comment: Move mouse cursor a specified position, here relative. Cursor movement

on the screen is always relative to the current position. Users should use

Mouse.begin() before using Mouse.move(). Usually called in setup().

Parameter:

xVal: The amount of movement along x axis. Data type: signed char.

yVal: The amount of movement along y axis. Data type: signed char.

wheel: The amount of wheel movement. Data type: signed char.

Because all three parameters are signed char, the range is x (-127 to 127), y (-127

to 127) or wheel (-127 to 127).

Example 1: Use Mouse.h to perform Joystick function, with a switch (46).

Control the mouse cursor movement by moving the joystick X axis and Y axis.

And with a button function (default left mouse button).

//Use official file->sample->USB->Mouse->JoystickMouseControl to modify

https://vimsky.com/cache/index.php?source=https%3A//www.arduino.cc/reference/en/language/functions/usb/mouse/mousebegin

TH244A001_UserGuide

124 Version: 0.40 megawin

//Use ADC detect joystick X/Y axis

//Joystick button acted as mouse left button

//Pin 13 connected to LED, represent mouse on/off state

//Pin 46 connected to USER KEY to switch USB mouse on/off state

//Joystick X/Y axis output connected to A0,A1; button of joystick connected to pin

0;

#include "Mouse.h"

//Set joystick pins of axis, button and LED.

const int switchPin = 46; // USER KEY to switch on/off mouse, different from

Arduino official.

const int mouseButton = 0; // button of joystick connected to pin 0, set to mouse

left button in this program, different from Arduino official.

const int xAxis = A0; // Joystick X axis analog input

const int yAxis = A1; // Joystick Y axis analog input

const int ledPin = 13; //mouse control LED, LED in this program set to

TH244A001 LED1. Enable mouse: LED turn on; Disable mouse: LED turn off;

Different from Arduino official.

//define variables to read joystick data

int range = 21; // X, Y axis the scope of the total mobile will be the

joystick here X or Y, the total amount of mobile level is defined as the 21; Different

from Arduino official.

TH244A001_UserGuide

megawin Version: 0.40 125

int responseDelay = 5; // mouse delay time, the parameter can be adjusted;

The smaller the mouse movement, the more sensitive it is;

int threshold = range / 7; // Silence threshold is between positive and negative

threshold, do not do any reaction, as no mouse movement action occurs;

int center = range / 2; // middle position

bool mouseIsActive = false; // mouse state

int lastSwitchState = LOW; // Default state for the switch

void setup() {

 pinMode(switchPin, INPUT); // initialize the switch pin to input

 pinMode(ledPin, OUTPUT); // initialize the mouse state LED control pin to

output

 pinMode(mouseButton, INPUT); //

 Mouse.begin(); //enable mouse function

}

void loop() {

 // Read the switch state, if there is a change and the latest state is HIGH, it

means the switch has pressed next. Change of state of HIGH->LOW->HIGH

 int switchState = digitalRead(switchPin);

 if (switchState != lastSwitchState) { // switch state change is detected

 if (switchState == HIGH) { // Determine HIGH after the state change

is complete

TH244A001_UserGuide

126 Version: 0.40 megawin

 mouseIsActive = !mouseIsActive; // mouse state switch

 digitalWrite(ledPin, mouseIsActive); // Mouse control LED state switch

 }

 }

 //keep new state of switch for next comparison

 lastSwitchState = switchState;

 // use ADC to detect joystick X, Y axis data

 int xReading = readAxis(A0); //use readAxis() to handle X axis data; return

mouse X axis relative movement amount.

 int yReading = readAxis(A1); // use readAxis() to handle Y axis data; return

mouse Y axis relative movement amount.

 //if mouse state is HIGH, then enable USB mouse movement operation.

 if (mouseIsActive) {

 Mouse.move(xReading, yReading, 0); //0 means wheel is no change.

 //xReading positive: left movement; xReading

negative: right movement;

 //yReading positive: down movement; yReading

negative: up movement;

 }

 // judge whether joystick button is pressed (set to mouse left button in this

program), if not pressed the left button, then press the left button;

TH244A001_UserGuide

megawin Version: 0.40 127

 if (digitalRead(mouseButton) == HIGH) {

 if (!Mouse.isPressed(MOUSE_LEFT)) {

 Mouse.press(MOUSE_LEFT);

 }

 }

 // else not pressed, send button

 else {

 // if the mouse is pressed, release it:

 if (Mouse.isPressed(MOUSE_LEFT)) {

 Mouse.release(MOUSE_LEFT);

 }

 }

 delay(responseDelay);

}

//define ADC sampling. Calculate X or Y axis relative movement;

 int readAxis (int thisAxis) {

 int reading = analogRead (thisAxis); //read X or Y axis through ADC

 //use map () function to map ADC data from 0->1023 to 0->range

 reading = map (reading, 0, 1023, 0, range);

 // if the output reading is outside from the rest position threshold, use it:

 int distance = reading - center;

TH244A001_UserGuide

128 Version: 0.40 megawin

 if (abs(distance) < threshold) {

 distance = 0;

 }

 // return the distance for this axis:

 return distance;

}

21.12. USB-Keyboard

Function: Keyboard.begin ()

Comment: Enable keyboard. This function enable a virtual keyboard and connected

to PC. Use Keyboard. End() to terminate the USB connection

Function: Keyboard.end ()

Comment: Disable keyboard

Function: Keyboard.press ()

Comment: Long press keyboard, to output button to PC. Use Keyboard.release () or

Keyboard.releaseAll () to release. For example, long press UP button.

Function: Keyboard.release ()

Comment: Release a specific key, responds to Keyboard.press ()

Function: Keyboard.releaseAll ()

Comment: Release all keys

Function: Keyboard.print ()

Comment: Typing on the keyboard, simulating typing events, such as simulating

TH244A001_UserGuide

megawin Version: 0.40 129

text input, can be done using this command.

Function: Keyboard.println ()

Comment: Similar to Keyboard.print (), with ENTER typing event

Function: Keyboard.write ()

Comment: Send one keyboard keystroke command. Similar to Keyboard.print (),

Keyboard.println (), but Keyboard.write () only sends one key command.

Keyboard.println (), Keyboard.print () or Keyboard.write (), only send ASCII character,

like: ABC, 123, space, ENTER.

Example 1: Enable keyboard, print numbers and characters

//Enable keyboard, use basic write (), print () and println ()

//write () can only print one byte, it's a number, it's the ASCII equivalent of a

character

//print (), println () can print numbers, letters, strings, etc

#include "Keyboard.h"

void setup() {

 Keyboard.begin (); // Enable keyboard

}

void loop() {

 Keyboard.write (97); //print ASCII 97: a

 Keyboard.print ('\n'); //ENTER

 Keyboard.write ('a'); //print character a

TH244A001_UserGuide

130 Version: 0.40 megawin

 Keyboard.print ('\n'); // ENTER

 Keyboard.print (97); //print 97

 Keyboard.print ('\n'); // ENTER

 Keyboard.print ('a'); // print character a

 Keyboard.print ('\n'); //ENTER

 Keyboard.println (97); // print 97

 Keyboard.print ('\n'); //ENTER

 Delay (5000); //delay 5s

}

TH244A001_UserGuide

megawin Version: 0.40 131

Example 2：

//Detect whether USER KEY 46 is pressed, if pressed, then keep print Hello,

TH244A001! through USB2 keyboard function.

//note: if PC keyboard has already set to Caps Lock, will output different mode.

//note: preset input mode to English mode

//For example, Caps in small letter this program prints Hello, TH244A001!

// For example, Caps in capital letter this program prints hELLO, TH244A001!

#include <Keyboard.h>

int pinpin = 46;

void setup () {

 //Because pin 46 already has pull-up resistor, initialize with INPUT instead of

INPUT_PULLUP;

 pinMode (pinpin, INPUT); // Use pinMode(pinpin, INPUT_PULLUP) if connecting

a GPIO without external pull-up resistor;

 Keyboard.begin ();

}

void loop() {

 //if the button is pressed

 if (digitalRead(pinpin) == LOW) {

 //Send the message

 Keyboard.print("Hello,TH244A001!");

TH244A001_UserGuide

132 Version: 0.40 megawin

 }

}

Example 3: Detect whether USER KEY is pressed, enable keyboard output.

Output the number of pressed button time; Used Keyboard.begin(),

Keyboard.print(), Keyboard.print()；

// Detect whether USER KEY is pressed, enable keyboard output and output the

number of pressed button time;

#include "Keyboard.h"

const int buttonPin = 46; // connected button pin, TH244A001 USER KRY is

pin46

int previousButtonState = HIGH; // button state, TH244A001 USER KEY is already

install pull-up resistor. Press the button, level will change to low from high.

int counter = 0; // counter of keystroke time, for recording keystroke

time

void setup() {

 // initialize button pin, use INPUT_PULLUP if there is no pull-up resistor in the

circuit

 pinMode(buttonPin, INPUT);

 // initialize keyboard function

 Keyboard.begin();

}

TH244A001_UserGuide

megawin Version: 0.40 133

void loop() {

 // read button state

 int buttonState = digitalRead(buttonPin);

 // if button state changed, and the current button state is HIGH level, the

process of pressed and released, pin 46 level should be changed

HIGH->LOW->HIGH;

 if ((buttonState != previousButtonState) && (buttonState == HIGH)) {

 // button counter increase

 counter++;

 // keyboard print: print the number of user pressed the button

 Keyboard.print("You pressed the button ");

 Keyboard.print(counter);

 Keyboard.println(" times.\n"); //print ENTER after output finish

 }

 // store the current button state for next comparison

 previousButtonState = buttonState;

}

TH244A001_UserGuide

134 Version: 0.40 megawin

21.13. RTC

Initialize RTC: /* This part of the initialization usually placed in setup */

Function: Rtc.begin();

Comment: Enable RTC

Function: Rtc.setDate(day，month， year);

Comment: Set date

Function: Rtc.setTime(hour， minute， sec);

Comment: Set time default is 24H system

Get time ingormation: /*Used in requirement*/

Function: Rtc.getHour();

Comment: Get the current hour

Function: Rtc.getMinute();

Comment: Get the current minute

Function: Rtc.getSecond();

Comment: Get the current second

Function: Rtc.getDay();

Comment: Get the current date

Function: Rtc.getMonth();

Comment: Get the current month

Function: Rtc.getYear();

Comment: Get the current year

TH244A001_UserGuide

megawin Version: 0.40 135

Example 1: Test UART print and RTC function

// TH244A001 provides a class MG32x02z_RTC for basic RTC function;

//This program use UART to print time and date information;

//Test UART UART print and RTC function;

#include <Keyboard.h>

void setup() {

 /* This part of the initialization usually placed in setup */

 Rtc.begin(); //enable RTC

 Rtc.setDate(24, 6, 2023); //set date2023-6-24

 Rtc.setTime(12, 48, 30); //set time 12：48：30

 Serial.begin(9600); //enable UART for print time and date information

}

void loop() {

 //Get time, printed by UART0;

 Serial.println("The current time：");

 Serial.print(Rtc.getHour());

 Serial.print(":");

 Serial.print(Rtc.getMinute());

 Serial.print(":");

 Serial.print(Rtc.getSecond());

TH244A001_UserGuide

136 Version: 0.40 megawin

 Serial.println();

 //get date, printed by UART0;

 Serial.println("The current date：");

 Serial.print(Rtc.getMonth());

 Serial.print("-");

 Serial.print(Rtc.getDay());

 Serial.print("-");

 Serial.print(Rtc.getYear());

 Serial.println();

 delay(1000);

}

TH244A001_UserGuide

megawin Version: 0.40 137

The output after the RTC is set is as follows

21.14. SLEEP/STOP mode

time constant
Defines some LowPower time constants that are common to Arduino and can

be used in sleep and IWDT.

IWDT timing is based on ILRCO 32KHz.

SLEEP_15MS = WDTO_15MS, //15ms time

 SLEEP_30MS = WDTO_30MS, //30ms time

 SLEEP_60MS = WDTO_60MS, //60ms time

 SLEEP_120MS = WDTO_120MS, //120ms time

 SLEEP_250MS = WDTO_250MS, //250ms time

 SLEEP_500MS = WDTO_500MS, //500ms time

 SLEEP_1S = WDTO_1S, //1s time

 SLEEP_2S = WDTO_2S, //2s time

TH244A001_UserGuide

138 Version: 0.40 megawin

 SLEEP_4S = WDTO_4S, //4s time

 SLEEP_8S = WDTO_8S, //8s time

 SLEEP_FOREVER = -1 // FOREVER

LowPowerClass
LowPowerClass is defined to enable energy saving mode settings.

class LowPowerClass

{

public:

 void idle(period_t period=SLEEP_FOREVER);

 void standby(period_t period=SLEEP_FOREVER);

 void longPowerDown(uint32_t sleepTime);

 void sleep(uint32_t sleepTime);

 void powerDown(period_t period, adc_t adc=ADC_OFF, bod_t bod=BOD_OFF,

usb_t usb=USB_OFF);

 void powerStandby(period_t period, adc_t adc=ADC_OFF, usb_t usb=USB_OFF);

};

extern LowPowerClass LowPower;

Basic Use of Class LowPower and Methods：
LowPower.idle(SLEEP_FOREVER) // Keeps STOP until a wakeup event occurs

TH244A001_UserGuide

megawin Version: 0.40 139

LowPower.idle(SLEEP_500MS); // Hold STOP for 500ms and it will wake up.

LowPower.standby(SLEEP_FOREVER) // Keep SLEEP until a wakeup event occurs

LowPower.standby(SLEEP_500MS); // Hold SLEEP for 500ms and it will wake up.

LowPower. longPowerDown(uint32_t sleepTime) // Set STOP any time in ms

LowPower. Sleep(uint32_t sleepTime) // Set STOP any time in ms

LowPower. powerDown(period_t period,

adc_t adc=ADC_OFF,

bod_t bod=BOD_OFF,

usb_t usb=USB_OFF);

 // STOP setting with selective shutdown function, period_t period is the STOP

state time, automatically wake up when the time is reached.

ADC_OFF、BOD_OFF、USB_OFF Select to close the project

LowPower. powerStandby(period_t period,

adc_t adc=ADC_OFF,

usb_t usb=USB_OFF);

 // SLEEP setting with selective shutdown function, period_t period is the time of

SLEEP state, wake up automatically when the time is reached.

ADC_OFF、USB_OFF Select to close the project

21.15. IWDT

IWDT timer is base onILRCO 32KHz。

TH244A001_UserGuide

140 Version: 0.40 megawin

SLEEP_15MS = WDTO_15MS, // watchdog timer 15ms timeout

 SLEEP_30MS = WDTO_30MS, // watchdog timer 30ms timeout

 SLEEP_60MS = WDTO_60MS, // watchdog timer 60ms timeout

 SLEEP_120MS = WDTO_120MS, // watchdog timer 120ms timeout

 SLEEP_250MS = WDTO_250MS, // watchdog timer 250ms timeout

 SLEEP_500MS = WDTO_500MS, // watchdog timer 500ms timeout

 SLEEP_1S = WDTO_1S, // watchdog timer 1s timeout

 SLEEP_2S = WDTO_2S, // watchdog timer 2s timeout

 SLEEP_4S = WDTO_4S, // watchdog timer 4s timeout

 SLEEP_8S = WDTO_8S, // watchdog timer 8s timeout

Examples of the use of combining interruptions: Instead of resetting the

MCU system, execute the interrupt service program ISR(WDT_vect)

/* The watchdog setting achieves the effect of 4S, changing the lamp number once.

Because after entering the interrupt, the timer still continues to time, so you can not

perform too many things in the interrupt service program ISR. Generally is the

implementation of a flag bit setting or state of the flip-flop, we have to feed the

dog action.

*/

#include "IWDT.h" //must include this file

int LEDpin = 13;

volatile int state =HIGH;

TH244A001_UserGuide

megawin Version: 0.40 141

ISR(WDT_vect)

{

state = !state; //What is performed in an interrupt must be simple

 wdt_reset(); // clear WDT

}

void setup() {

 pinMode(LEDpin, OUTPUT);

 wdt_disableRST(); //disable WDT Reset MCU Function

 wdt_enable(WDTO_4S); // enable WDT Timeout set to 4s

 wdt_reset(); // clear

}

void loop() {

 digitalWrite(LEDpin, state);

}

Combined with the use of reset example 2: open the door to the dog timeout for

2s, because the program is not designed to feed the dog, so it reaches 2s, it will

reset the system. Program each time from Setup () to start executing, through the

serial port to print information can be known every 2s, a RESET occurs.

#include "IWDT.h" //must include this file

void setup() {

 // put your setup code here, to run once:

TH244A001_UserGuide

142 Version: 0.40 megawin

 Serial.begin(9600);

 Serial.println("WDT timeout ,Reset MCU MG32F02U128.");

 wdt_enableRST(); // Enable watchdog interrupt reset MCU function

 wdt_enable(WDTO_2S); // Start the watchdog and set the timeout to 2s.

 wdt_reset(); //Watchdog timer reset (feeding dog)

}

void loop() {

 // put your main code here, to run repeatedly:

}

Combined with the use of reset example 3: open the door dog timeout for

2s, because the program is designed to feed the dog, will not happen to

reset the system. The program can consistently keep 0.5s light on and off.

#include "IWDT.h" // must include this file

void setup() {

TH244A001_UserGuide

megawin Version: 0.40 143

 // put your setup code here, to run once:

 pinMode(LED_BUILTIN, OUTPUT); // LED_BUILTIN built-in LED, pin D13

 digitalWrite(LED_BUILTIN, LOW);

 wdt_enableRST(); // Enable door open dog interrupt reset MCU

function

 wdt_enable(WDTO_2S); // Start the door opener, set the timeout to 2s.

 wdt_reset(); // Feed the dog (watchdog timer reset)

}

void loop() {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(500);

 digitalWrite(LED_BUILTIN, LOW);

 delay(500);

 digitalWrite(LED_BUILTIN, HIGH);

 delay(500);

 digitalWrite(LED_BUILTIN, LOW);

 delay(500);

 wdt_reset(); // Flash time 2s, feed the dog (reset timer) before the watchdog

timer timeout 2s (the actual length of time is slightly more than 2s) to avoid

reboot // put your main code here, to run repeatedly:

TH244A001_UserGuide

144 Version: 0.40 megawin

}

21.16. TimerOne

The output PWM function and the interrupt function are mainly utilized.

Example 1:

// Generate a PWM signal to control an external device via TimerOne; the PWM

signal frequency is 25 KHz; the PWM // duty cycle increases from 30% to 100% in

1% increments; repeat the increase back to 30%. The running process will print out

the duty cycle.

#include <TimerOne.h>

// This example creates a PWM signal with 25 kHz carrier.

//

const int fanPin = 43;

void setup(void)

{

 Timer1.initialize(40); // 40 us = 25 kHz

 Serial.begin(9600);

}

void loop(void)

{

TH244A001_UserGuide

megawin Version: 0.40 145

 // slowly increase the PWM fan speed

 //

 for (float dutyCycle = 30.0; dutyCycle < 100.0; dutyCycle++) {

 Serial.print("PWM Fan, Duty Cycle = ");

 Serial.println(dutyCycle);

Timer1.pwm(fanPin, (dutyCycle / 100) * 1023);

Serial.println();

 delay(500);

 }

}

Example 2:

TH244A001_UserGuide

146 Version: 0.40 megawin

//Use TimerOne timer interrupt to realize 0.5s blinking light and print the number

of blinking light in real time.

// The program also uses volatile modifier variables to achieve variable sharing

between the interrupt function and the main program. The program also uses

volatile modifiers to share variables between the interrupt function and the main

program. The interrupt is flexibly controlled by disabling the interrupt // and

restarting the interrupt.

#include <TimerOne.h

//This example uses a timer interrupt to make the LED blink, and also

demonstrates how variables are shared between the interrupt function and the

main program using volatile modifiers.

const int led = LED_BUILTIN; // the pin with a LED

void setup(void)

{

 pinMode(led, OUTPUT);

 Timer1.initialize(150000);

TH244A001_UserGuide

megawin Version: 0.40 147

 //Timer1.setPeriod(150000);

 Timer1.attachInterrupt(blinkLED); // blinkLED to run every 0.15 seconds

 Serial.begin(9600);

}

// The interrupt will blink the LED, and keep

// track of how many times it has blinked.

int ledState = LOW;

volatile unsigned long blinkCount = 0; // use volatile for shared variables

void blinkLED(void)

{

 if (ledState == LOW) {

 ledState = HIGH;

 blinkCount = blinkCount + 1; // increase when LED turns on

 } else {

 ledState = LOW;

 }

 digitalWrite(led, ledState);

}

TH244A001_UserGuide

148 Version: 0.40 megawin

// The main program will print the blink count

// to the Arduino Serial Monitor

void loop(void)

{

 unsigned long blinkCopy; // holds a copy of the blinkCount

 // to read a variable which the interrupt code writes, we

 // must temporarily disable interrupts, to be sure it will

 // not change while we are reading. To minimize the time

 // with interrupts off, just quickly make a copy, and then

 // use the copy while allowing the interrupt to keep working.

//Save a copy of blinkCount

//To read the variables written by the interrupt code, we

//must temporarily disable the interrupt to ensure that it

// won't be changed when we read it. To minimize interrupt shutdown time.

// just make a quick copy and then use the copy while re-allowing the interrupt to

continue.

 noInterrupts(); // temporarily disable interrupts

 blinkCopy = blinkCount.

 interrupts(); //start interrupts

 Serial.print("blinkCount = ");

 Serial.println(blinkCopy);

TH244A001_UserGuide

megawin Version: 0.40 149

 delay(100);

21.17. MsTimer2

MsTimer2::set(unsigned long ms, void (*f)());//Set the interval of the timing

interrupt and the interrupt service program called.

//ms indicates the length of the timing interval in ms;.

//void(*f)() indicates the name of the called interrupt service program function.

MsTimer2::start();//start timer interrupt

TH244A001_UserGuide

150 Version: 0.40 megawin

MsTimer2::stop(); //stop the timer interrupt, you can restart the interrupt at any

time with the start method.

void(*f)(){} //Timer interrupt handler function.

Example:

// Blink three times (0.5s on, 0.5s off), pause for 3s (pause interrupted for 3s).

Repeat.

#include <MsTimer2.h>

const int led_pin = LED_BUILTIN; // LED_BUILTIN = 13；

volatile int LED_times = 0;

void flash() { //define the interrupt function and record the number of times

 LED_times++;

 Serial.println(LED_times); //print the number of times the interrupt was

triggered, and pause the timer when it reaches 6 times

 static boolean output = HIGH;

 digitalWrite(led_pin, output);

 output = !output;

}

void setup() {

 pinMode(led_pin, OUTPUT);

TH244A001_UserGuide

megawin Version: 0.40 151

 MsTimer2::set(500, flash); // set the timer period 500ms to trigger an interrupt,

the interrupt function is flash

 MsTimer2::start(); // start timer

}

void loop() {

 if (LED_times == 6) // interrupt triggered 6 times, pause timer interrupt for 3s,

start timer interrupt again

 {

 MsTimer2::stop(); // pause the timer

 delay(3000);

 LED_times = 0.

 MsTimer2::start(); //start timer

 }

}

21.18. EEPROM

EEPROM.begin(Size); //Apply the size of the read/write operation, Size must be

smaller than the size defined by EEPROM_SIZE. For example, the default

EEPROM_SIZE=512, then here Size is 1~512.

Single-byte data read/write operation:

TH244A001_UserGuide

152 Version: 0.40 megawin

EEPROM.write(address,data) //write data to the specified address, write method is

to byte as the unit of storage, the

EEPROM.read(address) //read the specified address of the data, read() method is

to read byte units

EEPROM.commit(); //so that the data from the temporary storage area SRAM

saved to flash, to realize the power-down protection

When you need to write or read multiple bytes, such as floating point data or

shaping data or other data structures (which require multiple bytes to store data),

you can use the following method to read and write:

EEPROM.put(address, data) //write data to the specified address, data for the data

to be stored

EEPROM.get(address, data) //read the data at the specified address, data is the

data to be stored.

Byte count reference for common data in Arduino ARM 32-bit development

board:

Data types byte

count

definition Comment

void Used only as a function

declaration to indicate that

there is no return value

boolean 1 true,false

TH244A001_UserGuide

megawin Version: 0.40 153

bool 1 true,false

char 1 -128~127 A char in Arduino is signed and

is equivalent to a signed char.

The char is often used to store

ASCII characters. If you want to

store data, it is recommended to

use the byte type.

signed char 1

-128~127

unsigned

char
1

0~255 unsigned char , byte and uint8_t

type equivalents

byte 1 0~255

uint8_t 1 0~255

short 2 -32768~32767

uint16_t 2 0~65535

int 4 -2147483648~2147483647

unsigned int 4 0 ~ 4,294,967,295

word 4 0 ~ 4,294,967,295

long 4 -2147483648~2147483647

unsigned

long
4

0 ~ 4,294,967,295
unsigned long equivalent to

uint32_t type
uint32_t 4 0 ~ 4,294,967,295

TH244A001_UserGuide

154 Version: 0.40 megawin

float 4
-

3.4028235E+38~3.4028235E+38
Only 6~7 decimal precision

double 4
-

3.4028235E+38~3.4028235E+38
Only 6~7 decimal precision

Example program:

Storing 4 different types of data, which occupy different storage spaces, involves

single-byte reads and writes and multi-byte reads and writes.

After storing, it is printed out.

 char data ------------1 bytes

 int data -------------4 bytes

 float type data ---------- float type 4 bytes

 string (test character array) - 25 bytes. It is usually necessary to carry an end

flag byte 0. So the actual fetch length is 26.

/*

Single byte read and write : EEPROM.read(address); EEPROM.write(address,

byte)

Multi bytes read and write :

EEPROM.get(address,data); EEPROM.put(address,data)

TH244A001_UserGuide

megawin Version: 0.40 155

EEPROM.commit(); Submit to save data from the temporary storage area to flash,

achieving power-off protection

Here, store char data(1 byte)& int data (4 bytes)& float data(4 bytes) &

string(char array) (25 bytes) data to EEPROM

*/

//Load Library Files

#include <EEPROM.h>

//Define four different types of variabless

char charVal = 'a'; // 1 byte of char data to be stored in

EEPROM

int intVar = 999999; // 4 bytes of int data to be stored in

EEPROM

float floatVar = 234.567; // 4 bytes of floating-point data to be

stored in EEPROM

char string[] = "Test EEPROM store string."; // 25 bytes of string to be stored in

EEPROM,include a stop byte 0.

//Define three addresses to store four variables

int charValAddr = 0;

TH244A001_UserGuide

156 Version: 0.40 megawin

int intVarAddr = 1;

int fVarAddr = 5;

int stringAddr = 9;

void setup() {

 EEPROM.begin(512);

 Serial.begin(9600);

 //sizeof() is used to calculate the type length of the sizeof operator, in bytes

 Serial.println(" ");

 Serial.println("char data : " + String(sizeof(charVal)) + " byte."); //1 byte

 Serial.println("int data : " + String(sizeof(intVar)) + " bytes."); //4 bytes

 Serial.println("float data : " + String(sizeof(floatVar)) + " bytes."); //4ytes

 Serial.println("string data : " + String(sizeof(string)) + " bytes."); //26 bytes of

string to be stored in EEPROM,include a stop byte 0.

 EEPROM.write(charValAddr, charVal); // Store charVal in EEPROM address 0

 delay(10);

 EEPROM.put(intVarAddr, intVar); // Store intVar in EEPROM address 1

 delay(10);

TH244A001_UserGuide

megawin Version: 0.40 157

 EEPROM.put(fVarAddr, floatVar); // Store floatVar in EEPROM address 5

 delay(10);

 EEPROM.put(stringAddr, string); // Store string in EEPROM address 9

 delay(10);

 EEPROM.commit(); //Submit to save data from the temporary storage area to

flash,

 Serial.println("Finished write data!");

 Serial.println("Start read datas:");

 charVal = EEPROM.read(charValAddr);

 EEPROM.get(intVarAddr, intVar);

 EEPROM.get(fVarAddr, floatVar);

 EEPROM.get(stringAddr, string);

 Serial.println("charVal is " + String(charVal));

 Serial.println("intVar is " + String(intVar));

 Serial.println("floatVar is " + String(floatVar, 3)); // three decimal places

 Serial.println("string is " + String(string));

 Serial.println("End read.");

 for (int addr = 0; addr < 512; addr++) {

 int data = EEPROM.read(addr); //read one byte

TH244A001_UserGuide

158 Version: 0.40 megawin

 Serial.print(data);

 Serial.print(" ");

 delay(2);

 if ((addr + 1) % 256 == 0) //

 {

 Serial.println("");

 }

 }

 Serial.println("End read");

}

void loop() {

 // put your main code here, to run repeatedly:

}

TH244A001_UserGuide

megawin Version: 0.40 159

	1. Revision
	2. Development Board Overview
	3. Specification of development board
	3.1. Power supply block diagram
	3.2. Power supply priority
	3.3. External power DC-JACK（Location DC1）:
	3.4. External power VIN(Location CN1)：
	3.5. USB1/USB2 power supply(Location USB1，USB2)
	3.6. 5V/3.3V output(Location CN1 CN5)：
	3.7. J1 development board operating voltage selection
	3.8. J2 ADC external reference voltage switching
	3.9. J3 Virtual com port enabled

	4. Digital I/O
	4.
	4.1. Brief Introduction
	4.2. Drive load capacity reference
	VDD=5V Condition，
	VDD=3.3V Condition，

	4.3. Digital I/O list

	5. Time function TIMER
	6. Alternate function selection
	7. PWM
	8. DAC
	9. ADC
	5.
	6.
	7.
	8.
	9.
	9.1. ADC brief introduction
	9.2. ANALOG IN list

	10. Serial I/O
	10.
	10.1. UART
	10.2. IIC
	10.3. SPI

	11. USB
	11.
	11.1. USB1
	11.2. USB2

	12. RTC
	13. SLEEP/STOP Mode
	14. IWDT
	12.
	13.
	14.
	14.1. Independent Watchdog Timer
	14.2. IWDT dedicated interrupt
	14.3. IWDT library main usage

	15. Timer interrupt-TimerOne
	15.
	15.1. TimerOne(introduce)
	15.2. Timer One library control output PWM
	15.3. TimerOne library timing interrupt

	16. Timer interrupt Mstimer2
	17. EEPROM
	18. Multi-segment digital tube library display
	19. Other Important Notes
	16.
	17.
	18.
	19.
	19.1. AREF (CN3)
	19.2. RESET PIN (CN1-RESET)
	19.3. RESET KEY: SW2
	19.4. USER KEY SW3
	19.5. L13: LED1
	19.6. TXLED/RXLED
	19.7. MCU power switch SW1 / Power ON LED2
	19.8. LED6/7/8 indicated MLink connection state between USB1 and PC
	19.9. IOREF
	19.10. Development kit path management
	19.11. Virtual com setting and program download

	20. TH244A001 reset
	21. Common use function and basic usage
	20.
	21.
	21.1. GPIO read and write control
	21.2. Delay function
	21.3. Timer
	21.4. PWM
	21.5. DAC
	21.6. ADC
	21.7. UART
	21.8. IIC
	21.9. SPI Master
	21.10. USB
	21.11. USB-mouse
	21.12. USB-Keyboard
	21.13. RTC
	21.14. SLEEP/STOP mode
	time constant
	LowPowerClass
	Basic Use of Class LowPower and Methods：

	21.15. IWDT
	21.16. TimerOne
	21.17. MsTimer2
	21.18. EEPROM

