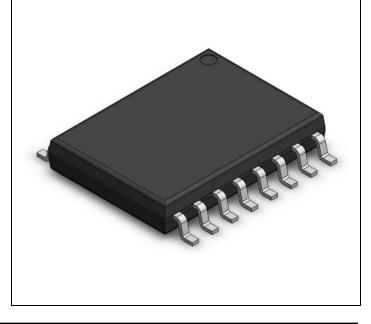


Description

The MPCS-3922 is isolated dual-channel gate drivers with 4A peak output current. It is designed to drive power MOSFETs, IGBTs, and SiC MOSFETs up to 5-MHz with well performanced propagation delay and pulse-width distortion. The input is electrically isolated from the two output drivers by a 5.7-kVRMS reinforced isolation barrier, offering at least 50KV/us common-mode transient immunity (CMTI). The internal isolation between the two secondary-side drivers supports a maximum working voltage of 1500 VDC. Each driver can be configured as either two low-side drivers, two high-side drivers, or a half-bridge driver with adjustable dead time (DT). A disable pin will deactivate both outputs when set to high, while leaving it open or grounding it allows normal operation. As a safety feature, primary-side logic failures will force both outputs to a low state.

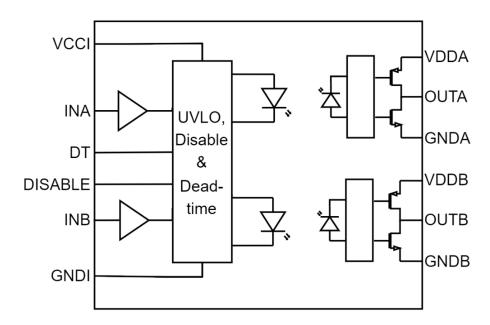
Applications


- Isolated converters in DC-DC and AC-DC power supplies
- AC and brushless DC motor drives
- Industrial inverters and Uninterruptible Power Supply (UPS)

PIN DEFINITION

1.INA	16.Vdda
2.IN в	15.OUT _A
3.Vcci	14.Vssa
4.GND	13.NC
5.DISABLE	12.NC
6.DT	11.V _{DDB}
7.NC	10.OUT _B
8.Vcci	9. V _{SSB}

PACKAGE OUTLINE



SOP16, 4A Output Dual-Channel Gate Driver

Features

- dual low-side, dual high-side or half-bridge driver
- Operating temperature range -40 to +110°C
- Switching parameters:
 - 19ns typical propagation delay
 - 10ns minimum pulse width
 - 5ns maximum delay matching
 - 6ns maximum pulse-width distortion
- Common-mode transient immunity (CMTI) greater than 50KV/us
- 4A peak source, 4A peak sink output
- Available in SOP16 package
- 3V to 18V input VCCI range
- Up to 30V VDD output drive supply
- Programmable overlap and dead time
- Rejects input pulses and noise transients shorter than 5 ns
- Fast disable for power sequencing

Internal Circuit

SOP16, 4A Output Dual-Channel Gate Driver

SOP16, 4A Output Dudi-Channel Gate Div								
A	BSOLUTE MA		ATINGS					
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE			
Storage Temperature	T _{stg}	-55	125	°C				
Operating Temperature	T _A	-40	110	°C				
Output IC Junction Temperature	TJ	-	125	°C				
Input Bias Pin Supply Voltage	VCCI to GND	-0.3	20	V				
Output Supply Voltage	(VDDA - VSSA)	-0.3	30	V				
	(VDDB - VSSB)	0.0	50	v				
	OUTA to VSSA	-0.3	V _{DDA} +0.3	V				
	OUTB to VSSB	-0.5	V _{DDB} +0.3	v				
Output Voltage	OUTA to VSSA		V _{DDA} +0.3					
	OUTB to VSSB	-2	V _{DDA} +0.3 V _{DDB} +0.3	V				
	Transient for 200 ns		V DDB +0.3					
	INA, INB, DIS, DT	-0.3	Vcci +0.3	V				
Input Signal Voltage	To GND	-0.5	VCCI +0.3	v				
input Signal Voltage	INA, INB	-5	Vcci +0.3	V				
	Transient for 50 ns	-0	VCCI +0.3	v				
Channel to Channel Voltage	VSSA - VSSB		1500	V				
Channel to Channel Voltage	VSSB - VSSA	-	1500	v				

RECOMMENDED OPERATION CONDITIONS								
PARAMETER	SYMBOL	MIN.	MAX.	UNIT				
Input Supply Voltage	VCCI	3	18	V				
Output Bias Supply Voltage	VDDA, VDDB	15	30	V				
Input Voltage	INA, INB, DIS, DT	0	V _{VCCI}	V				
Operating Temperature	TA	-40	110	°C				

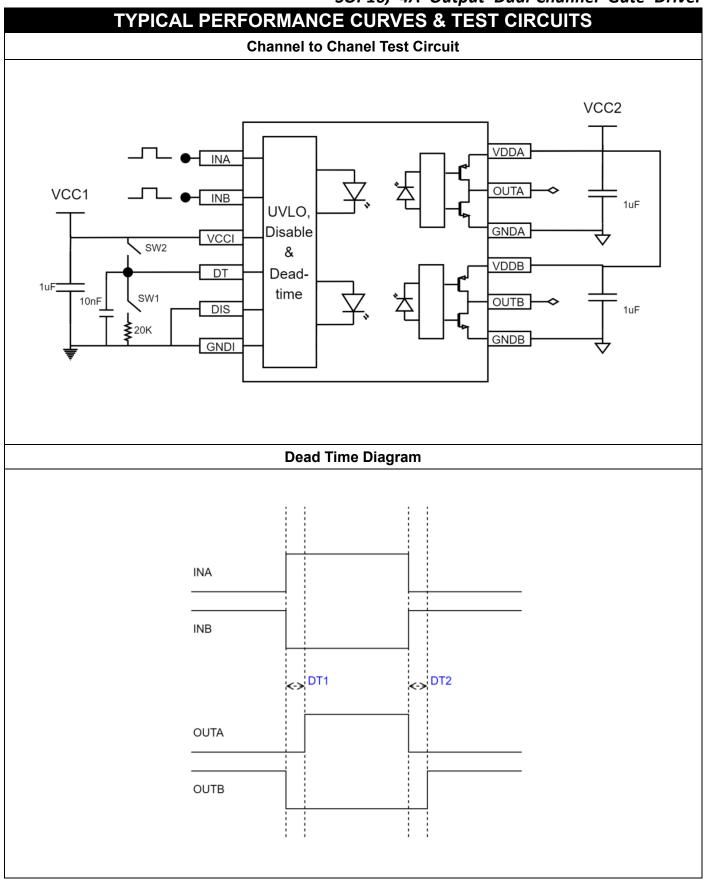
\square –			SOP16	5, 4A	Outpu	t Dual-Channel Gate	Driver		
ELEC	TRICAL	OPTI	CAL C	HAR	ACTER	RISTICS			
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE		
		SUPPL	Y CURR	ENTS					
VCCI quiescent current	Ivcci	-	2.5	3	mA	$V_{\text{INA}}=0~V,~V_{\text{INB}}=0~V$			
VDDA and VDDB quiescent	IVDDA		2	3	mA	$V_{INA} = 0 V, V_{INB} = 0 V$			
current	IVDDB	-	2	5		V INA = 0 V, V INB = 0 V			
VCCI operating current	Ivcci	-	2.5	3	mA	(f = 500 kHz)			
VDDA and VDDB operating	I _{VDDA}	_	4	4.5	mA	current per channel,			
current	I _{VDDB}			ч.0		Соит = 100 рF			
	VCCI UVLO THRESHOLDS								
Rising threshold	V _{VCCI_ON}	2.5	2.8	2.9	V	-			
Falling threshold VCCI_OFF	Vvcci_off	2.35	2.55	2.7	V	-			
Threshold hysteresis	Vvcci_hys	-	0.25	-	V	-			
	VI		O THRE	SHOLD	S				
Rising threshold	Vdda_on	11.3	12.6	13.3	V	VO > 5V			
VDDA_ON, VDDB_ON	VDDB_ON	11.0	12.0	10.0	.5 V	10 2 01			
Falling threshold	Vdda_off	9.8	11.1	11.8	V	7 VO < 5V			
VDDA_OFF, VDDB_OFF	VDDB_OFF	0.0		11.0	, in the second				
Threshold hysteresis	V _{DDA_HYS}	-	1.5	_	V	_			
	VDDB_HYS		1.0		v				
INPUT CHANNEL CHARACTERISTICS									
Input high voltage	Vinah,	_	1.3	2	V	-			
	Vinbh, Vdish	- 1.5	2	,					
Input low voltage	$V_{\text{INAL}}, V_{\text{INBL}},$	0.8	1.2	-	V	-			
	V _{DISL}								
Input hysteresis	VINA_HYS,	-	0.1	-	V	-			
	VINB_HYS				-				

			SOP1	5, 4A	Outpu	it Dual-Channel Gate	Driver		
ELECTRICAL OPTICAL CHARACTERISTICS									
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE		
OUTPUT CHARACTERISTICS									
	Iouta+	3			^				
Peak output source current	IOUTB+	3	-	-	A	VDD=30V, C _{VDD} =10uF			
Dook output sink ourroat	Iouta-	3			^	VOUT=VDD-15V			
Peak output sink current	IOUTB-	3	-	-	A				
	Devery vi					$I_{OUT} = -10 \text{ mA}, T_A = 25^{\circ}\text{C},$			
Output resistance at high state	Routa_h,		2		Ω	Roha, Rohb do not represent			
	Routb_h					drive pull-up performance			
	R _{OUTA_L}		1.6	-	Ω	10 m A T 25%			
Output resistance at low state	R _{OUTB_L}	-			11	$I_{OUT} = -10 \text{ mA}, T_A = 25^{\circ}\text{C}$			
Output voltage at high state	Vouta_h	29.8	-	-	V	$V_{VDDA}, V_{VDDB} = 12 V,$			
Output voltage at high state	Voutb_h				v	$I_{OUT} = -10 \text{ mA}, T_A = 25^{\circ}C$			
Output voltage at low state	V _{OUTA_L}	_	_	25	mV	$V_{VDDA}, V_{VDDB} = 12 V,$			
Oulput voltage at low state	V _{OUTB_L}	- DUTB_L	-	25	mv	$I_{OUT} = 10 \text{ mA}, T_A = 25^{\circ}C$			
	DEADTIME	AND O	VERLAF	PROGI	RAMMIN	IG			
	0	verlap d	etermine	ed					
			by IN	IA INB		Pull DT pin to VCCI			
Dead time					DT pin is left open, min				
Dead time		-	9.5	15	ns	spec characterized only,			
						tested for outliers			
		100	165	300	ns	R _{DT} = 20 kΩ			

COD1C

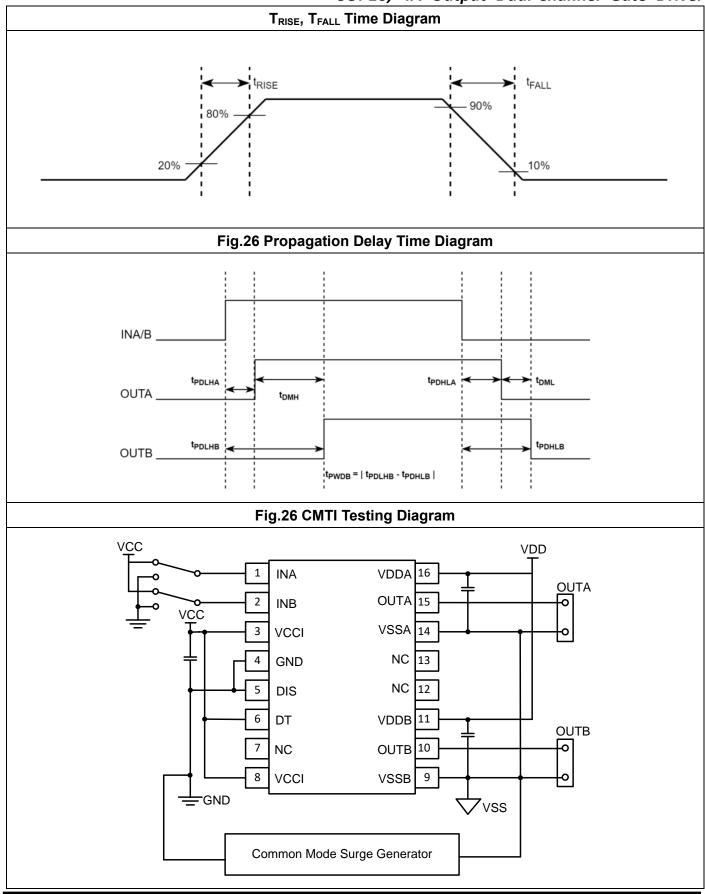
.

Unless otherwise noted, $V_{VCCI} = 3.3 \text{ V or } 5 \text{ V}$, 0.1- μ F capacitor from V_{CCI} to GND, $V_{VDDA} = V_{VDDB} = 30 \text{ V}$, 1- μ F capacitor from V_{DDA} and V_{DDB} to V_{SSA} and V_{SSB} , $T_A = -40^{\circ}$ C to +125°C.

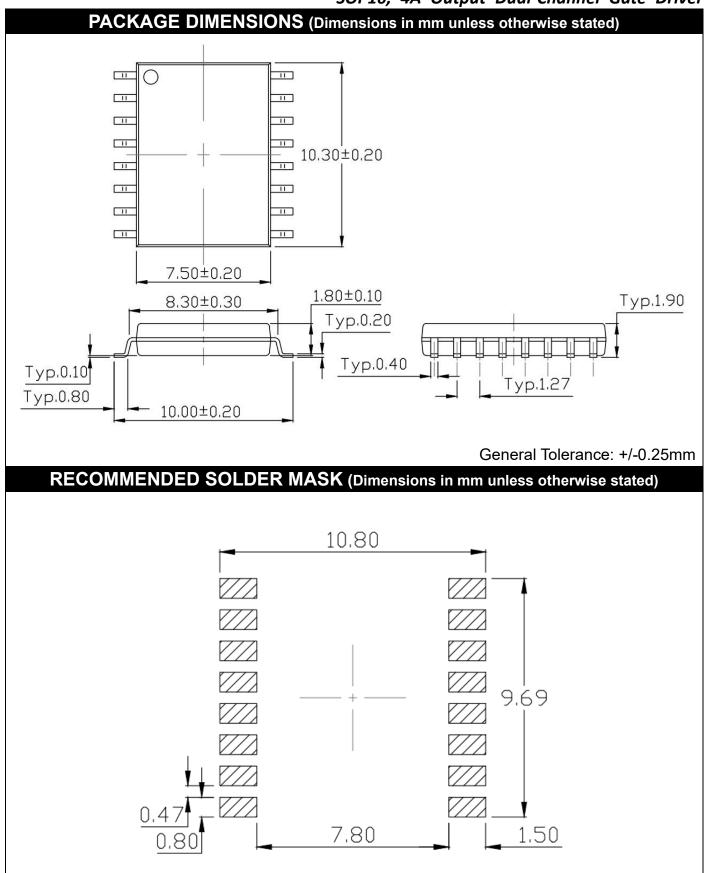

			SOF	P16, 4	4A O	utput Dual-Channel Gate I	Driver
	SWITC	HIN(g Sp	ECIF	ICAT	ION	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Output rise time, 20% to 80% measured points	trise	-	4.5	-	ns		
Output fall time, 90% to 10% measured points	t _{FALL}	-	3.6	-	ns	C _{OUT} = 1.8nF	
Propagation delay from INx to OUTx falling edges	t PDHL	35	60	150	ns	-	
Propagation delay from INx to OUTx rising edges	tpdlh	35	70	150	ns	-	
Pulse width distortion t _{PDLH} – t _{PDHL}	t _{PWD}	-	10	-	ns	-	
Propagation delays matching between Vouta, Voutв	tом	-	-	8	ns	f = 100 kHz	
V_{DDA} , V_{DDB} Power-up Delay Time: U_{VLO} Rise to OUT _A , OUT _B .	$t_{VDD+ to OUT}$	-	10	-	us	IN_{A} or IN_{B} tied to V_{CCI}	
Output High Level Common Mode Transient Immunity	CMH	-	75	-	kV/us	INA and INB both are tied to Vcci; Vcm=1500V	
Output Low Level Common Mode Transient Immunity	CML	-	75	-	kV/us	$IN_{\mathbb{A}}$ and $IN_{\mathbb{B}}$ both are tied to GND; $V_{\text{CM}}{=}1500V$	

Unless otherwise noted, $V_{VCCI} = 3.3 \text{ V or } 5 \text{ V}$, $0.1 - \mu \text{F}$ capacitor from V_{CCI} to GND, $V_{VDDA} = V_{VDDB} = 12 \text{ V}$, $1 - \mu \text{F}$ capacitor from V_{DDA} and V_{DDB} to V_{SSA} and V_{SSB} , $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.

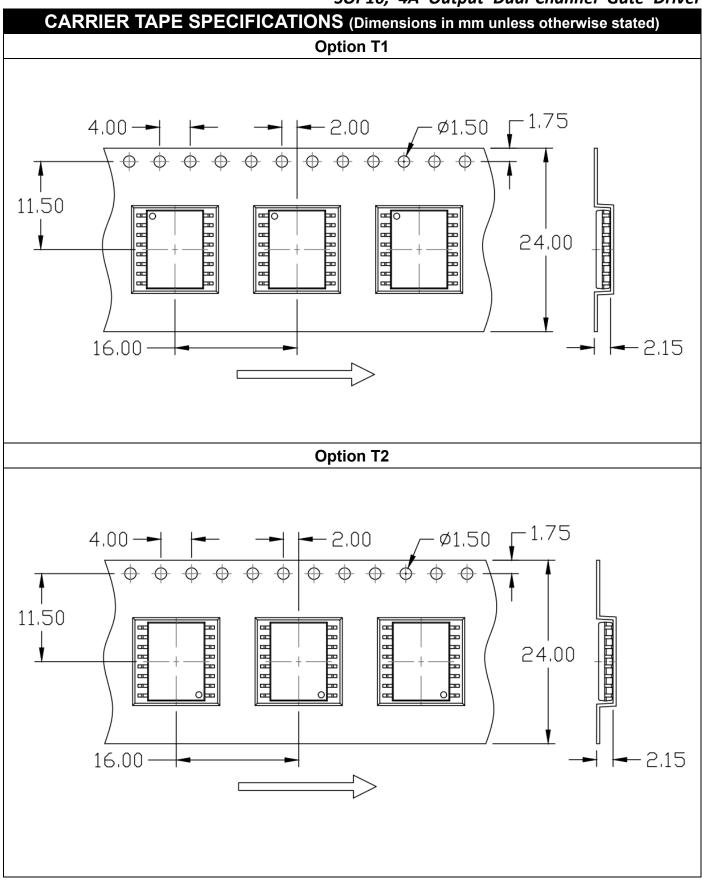
ISOLATION CHARACTERISTIC												
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE					
Withstand Insulation	Mar	5000	5000							V	RH ≤ 40%-60%,	
Test Voltage	Viso	5000		-	v	t = 1min, T _A = 25 °C						
Input-Output	D		10 ¹²		0							
Resistance	RI-0	-	1012	-	Ω	V _{I-O} = 500V DC						


SOP16, 4A Output Dual-Channel Gate Driver

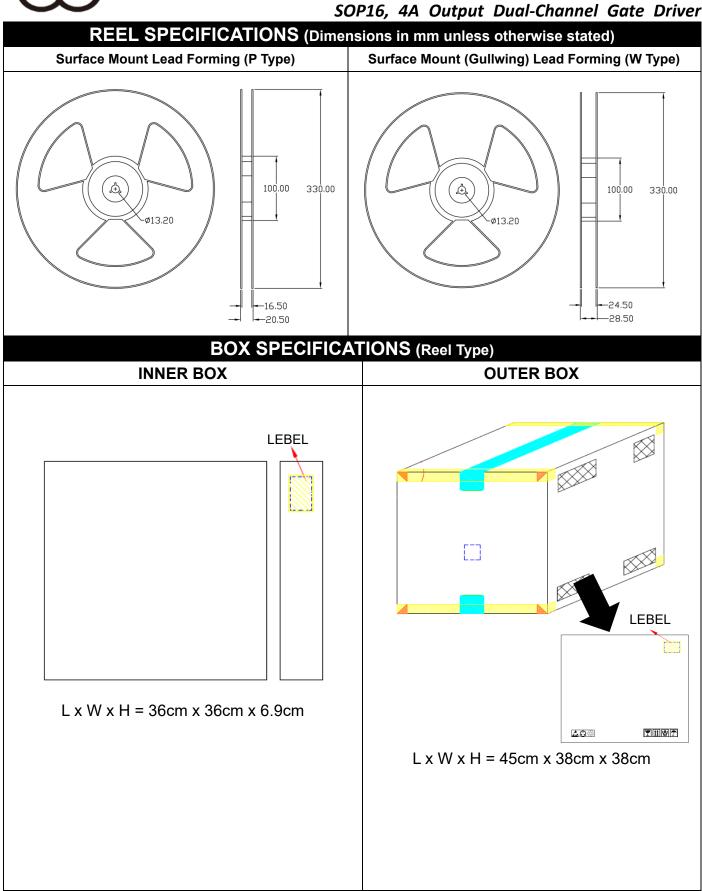
Rev: v.0.1(Preliminary)


SOP16, 4A Output Dual-Channel Gate Driver

Rev: v.0.1(Preliminary)

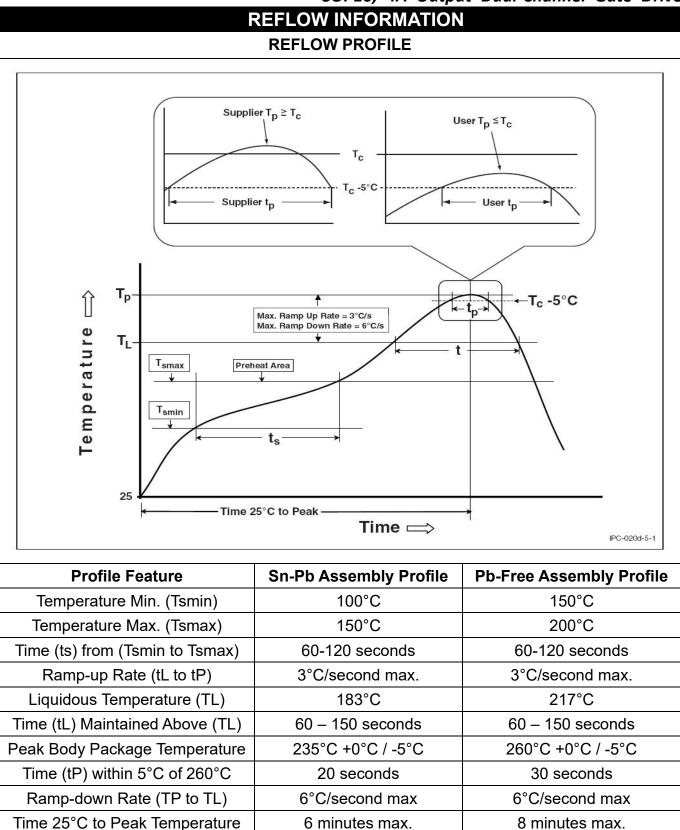

SOP16, 4A Output Dual-Channel Gate Driver

Rev: v.0.1(Preliminary)

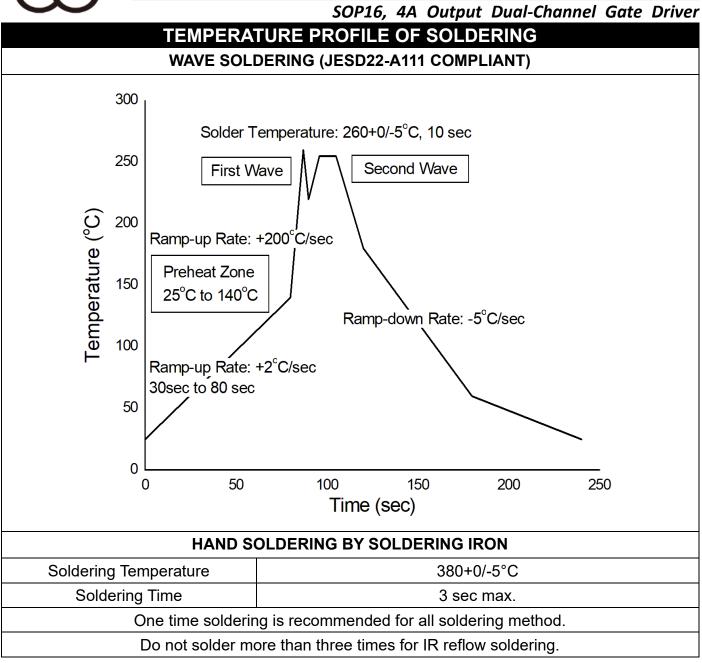


SOP16, 4A Output Dual-Channel Gate Driver

Rev: v.0.1(Preliminary)


Rev: v.0.1(Preliminary)

		SOP10	6, 4A	Output Dual-Channel Gate Driver				
ORDERING AND MARKING INFORMATION								
	Ν	ARKING INFO	RMATI	ON				
	MYYWW 3922 TV			: Company Abbr. : Year date code : 2-digit work week : Part Number I : Factory identification mark : VDE Identification(Option)				
ORD	ERING INFORMAT	ION	LABEL INFORMATION					
М	PCS-3922-Z	V		b 喆光照明光電股份有限公司 WISELITE Optronics Co., Ltd				
S – Stack 3922 – Part N Z – Tape and	MPC – Company Abbr. S – Stack 3922 – Part Number Z – Tape and Reel Option (T1/T2) / –VDE Option (V or None)		Lot I Date Q'ty	No : XXXXXXXXXXX Bin Code : X No : XXXXXXXXXXX e Code : XXXX : XXXX pcs				
		PACKING QUA		(
Option	Quantity	Quantity – Inner	r box	Quantity – Outer box				
T1/T2	1000 Units/Reel	2 Reels/Inner b	хох	5 Inner box/Outer box = 10k Units				



Rev: v.0.1(Preliminary)

SOP16, 4A Output Dual-Channel Gate Driver DISCLAIMER

- WISELITE is continually improving the quality, reliability, function and design. WISELITE reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- WISELITE makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, WISELITE disclaims (a) any and all liability arising out of the application or use of any product, (b) any and all liability, including without limitation special, consequential or incidental damages, and (c) any and all implied warranties, including warranties of fitness for particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact WISELITE sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated in each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify WISELITE's terms and conditions of purchase, including but not limited to the warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.