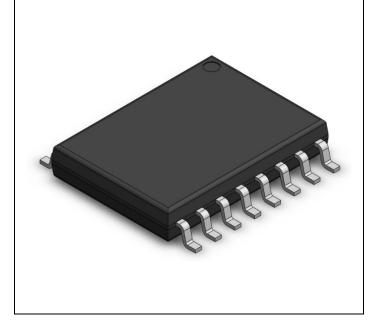


Description

The MPCS-333J is an advanced 2.5 A output current, easyto-use, intelligent gate driver which makes IGBT V_{CE} fault protection compact, affordable, and easy-to implement. Features such as integrated V_{CE} detection, under voltage lockout (UVLO), "soft" IGBT turn-off, isolated open collector fault feedback and active Miller clamping provide maximum design flexibility and circuit protection. The MPCS -333J contains a LED. The LED is optically coupled to an integrated circuit with a power output stage. MPCS -333J is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200 V and 150 A. For IGBTs with higher ratings, the MPCS -333J can be used to drive a discrete power stage which drives the IGBT gate. The MPCS -333J has an insulation voltage of V_{IORM} = 1414 VPFAK.

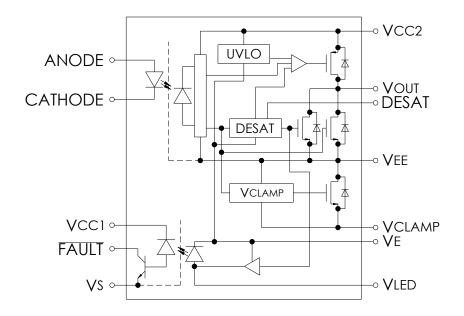
Features


- 2.5 A maximum peak output current
- 2.0 A minimum peak output current
- 250 ns maximum propagation delay over temperature range
- 1.7A Active Miller Clamp. Clamp pin short to
 V_{EE} if not in used
- Miller Clamping
- Desaturation Detection
- Under Voltage Lock-Out Protection (UVLO)
 with Hysteresis
- "Soft" IGBT Turn-off

PIN DEFINITION

1. V s	16.V _E
2.V _{CC1}	15.V LED
3.FAULT	14.DESAT
4.V s	13.V _{CC2}
5.CATHODE	12.V _{EE}
6.ANODE	11.V _{OUT}
7.ANODE	10.V _{CLAMP}
8.CATHODE	9.V _{EE}

PACKAGE OUTLINE



- Automatic Fault Reset after fixed Mute Time, typically 26us
- Available in SO-16 package
- 100 ns maximum pulse width distortion (PWD)
- 50 kV/μs minimum common mode rejection (CMR) at V_{CM} = 1500 V
- I_{CC}(max) < 5 mA maximum supply current
- Wide V_{CC} operating range: 15 V to 30 V over temperature range
- Wide operating temperature range: –40°C to 110°C
- Regulatory Approvals
 - UL UL1577
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898

Applications

- Isolated IGBT/Power MOSFET gate drive
- AC and brushless DC motor drives
- Industrial inverters and Uninterruptible Power Supply(UPS)

Internal Circuit

	301 10,	z.sh outp	at Siliait C	ate biller	Оргосоиріс	
AB	SOLUTE M	AXIMUM F	RATINGS			
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE	
Storage Temperature	T _{stg}	-55	125	°C		
Operating Temperature	T _A	-40	110	°C	2	
Output IC Junction Temperature	TJ	-	125	°C	2	
Average Forward Input Current	l _F	-	20	mA	1	
Peak Transient Input Current (<1 µs pulse width, 300pps)	I _{F(TRAN)}	-	1.0	А		
Reverse Input Voltage	V _R	-	5	V		
"High" Peak Output Current	I _{OH(PEAK)}	-	2.5	А	3	
"Low" Peak Output Current	I _{OL(PEAK)}	-	2.5	А	3	
Positive Input Supply Voltage	Vcc1	-0.5	7.0	V		
FAULT Output Current	I _{FAULT}	-	8.0	mA		
FAULT Pin Voltage	V _{FAULT}	-0.5	V _{CC1}	V		
Total Output Supply Volta	(V _{CC2} - V _{EE})	-0.5	35	V		
Negative Output Supply Voltage	(V _E - V _{EE})	-0.5	15	V	6	
Positive Output Supply Voltage	(V _{CC2} - V _E)	-0.5	35-(V _E -V _{EE})	V		
Gate Drive Output Voltage	V _{O(PEAK)}	-0.5	V _{CC2}	V		
Peak Clamping Sinking Current	I _{Clamp}	-	1.7	А		
Miller Clamping Pin Voltage	V _{Clamp}	-0.5	V _{CC2}	V		
DESAT Voltage	VDESAT	VE	V _E +10	V		
Output IC Power Dissipation	Po	-	600	mW	2	
Input IC Power Dissipation	Pı	-	150	mW	2	
Solder Reflow Temperature Profile	See Package Outline Drawings section					

RECOMMENDED OPERATION CONDITIONS							
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	Note		
Operating Temperature	T _A	-40	110	°C	2		
Total Output Supply Voltage	(V _{CC2} - V _{EE})	15	30	V	7		
Negative Output Supply Voltage	(V _E - V _{EE})	0	15	V	4		
Positive Output Supply Voltage	(V _{CC2} - V _E)	15	30-(V _E -V _{EE})	V			
Input Current (ON)	I _{F(ON)}	8	12	mA			
Input Voltage (OFF)	V _{F(OFF)}	-3.6	0.8	V			

SOP16, 2.5A Output Smart Gate Driver Optocoupler

ELECT						RISTICS		
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE	
	IN	PUT CH	ARACTE	RISTIC	S			
FAULT Logic Low		-	0.01	0.4	V	I _{FAULT} = 1.1 mA, V _{CC1} = 5.5V		
Output Voltage	VFAULTL	-	0.02	0.4	V	IFAULT = 1.1 mA, V _{CC1} = 3.3V		
FAULT Logic High		-	0.01	0.5	μA	VFAULT = 5.5 V, VCC1 = 5.5V		
Output Current	IFAULTH	-	0.006	0.3	μA	V _{FAULT} = 3.3 V, V _{CC1} = 3.3V		
High Level		-	-2.0	-0.5	Α	Vo = Vcc2 - 4	5	
Output Current	Іон	-	-	-2.0	Α	Vo = Vcc2 - 15	3	
Low Level		0.5	2.0	-	Α	$V_0 = V_{EE} + 2.5$	5	
Output Current	l _{OL}	2.0	-	-	Α	Vo = V _{EE} + 15	3	
Low Level Output Current			440		^	V V 44V		
During Fault Condition	lolf	-	110	-	mA	V _{OUT} - V _{EE} = 14 V	6	
High Level Output Voltage	V _{OH}	V _{CC} -0.5	V _{CC} -0.1	-	V	Ι ₀ = -650 μΑ	7,8,9,23	
Low Level Output Voltage	Vol	-	0.13	0.5	V	I _O = 100 mA		
Clamp Pin Threshold Voltage	V _{tClamp}	-	2.2	-	V	-		
Clamp Low Level Sinking Current	IcL	0.35	1.0	-	Α	Vo = VEE + 2.5		
High Level Supply Current	Ісс2н	-	2.16	5	mA	I _O = 0 mA	9	
Low Level Supply Current	I _{CC2L}	-	2.29	5	mA	$I_O = 0 \text{ mA}$		
Blanking Capacitor		laura	0.40	0.00	0.00	A	V 2V	0.40
Charging Current	Існ	0.13	-0.23	-0.33	mA	V _{DESAT} = 2 V	9,10	
Blanking Capacitor	I	10	24		m ^	V 70V		
Discharge Current	IDSCHG	10	31	-	mA	V _{DESAT} = 7.0 V		
DESAT Threshold	VDESAT	6	6.7	7.5	V	V _{CC2} -V _E >V _{UVLO-}	9	
LIVI O Throohold	V _{UVLO+}	10.5	11.5	12.5	V	Vo > 5 V	7,9,11	
UVLO Threshold	V _{UVLO} -	9.2	10.5	11.1	V	Vo < 5 V	7,9,12	
LIVI O Hystorosia	(V _{UVLO+}	0.4	1		V			
UVLO Hysteresis	- Vuvlo-)	0.4	I	-	V	-		
Threshold Input Current	le		0.33	5	mA	$I_0 = 0 \text{ mA}, V_0 > 5 \text{ V}$		
Low to High	IFLH	_	0.55	<u> </u>	ША	10 = 0 111A, V0 > 3 V		
Threshold Input Voltage High to Low	V _{FHL}	0.8	1.75	-	V	-		
Input Forward Voltage	VF	1.6	2.0	2.4	V	IF = 10 mA		
Input Reverse Breakdown Voltage	BV _R	5	-	-	V	IR = 10 μA		
Input Capacitance	C _{IN}	-	70	-	pF	f = 1 MHz, VF = 0 V		

Unless otherwise noted, all typical values at $T_A = 25^{\circ}C$, $V_{CC2} - V_{EE} = 30 \text{ V}$, $V_E - V_{EE} = 0 \text{ V}$; all Minimum/Maximum specifications are at Recommended Operating Conditions.

	SWITC	HING	G SP	ECIF	ICAT	TION	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Propagation Delay Time	tphL	50	104	250	ns		
to Output Low Level	TPHL	30	104	230	113		
Propagation Delay Time	t _{PLH}	50	77	250	ns	Rg = 20 Ω , Cg = 5 nF,	13,15
to Output High Level	YPLN	00		200	110	f = 10 kHz,	10,10
Pulse Width Distortion	PWD	-100		100	ns	Duty Cycle = 50%,	14,17
Propagation Delay Difference	PDD	-150	_	150	ns	$I_F = 10 \text{ mA}, V_{CC2} = 30 \text{ V}$	17,16
Between Any Two Parts	(t _{PHL} - t _{PLH})	100		100	110	1, 10 11, 1, 1002 00 1	17,10
Rise Time	t _r	-	50	-	ns		
Fall Time	t _f	-	45	-	ns		
DESAT Sense to 90%	t _{DESAT(90%)}	_	0.1	0.5	μs	$C_{DESAT} = 100pF, R_F=2.1k\Omega,$	19
VO Delay	TDESAT(90%)		0.1	0.0	μο	Rg = 10 Ω , Cg = 10 nF, $V_{CC2} = 30 \text{ V}$	10
DESAT Sense to 10%	tDESAT(10%)	_	2.2	3	μs	$C_{DESAT} = 100pF, R_F=2.1k\Omega$,	
VO Delay	tDESAT(10%)		2.2	J	μο	Rg =10 Ω , Cg = 10 nF, V _{CC2} = 30 V	
						CDESAT = 100 pF, $R_F = 2.1k\Omega$,	
		-	0.2	0.5	μs	$C_F = Open, Rg = 10 \Omega,$	
DESAT Sense to Low Level	tdesat(fault)					Cg = 10 nF, V _{CC2} = 30 V	18
FAULT Signal Delay	tDESAT(FAULT)					$C_{DESAT} = 100 \text{ pF}, R_F = 2.1 \text{k}\Omega,$	10
		-	0.8	-	μs	$C_F = 1 \text{ nF}, Rg = 10 \Omega,$	
						Cg = 10 nF, V _{CC2} = 30 V	
DESAT Sense to DESAT	tdesat(low)	_	0.15	_	μs	$C_{DESAT} = 100pF, R_F = 2.1k\Omega,$	19
Low Propagation Delay	tDESAT(LOW)		0.10		μо	Rg = 10 Ω , Cg = 10 nF, V _{CC2} = 30 V	
						C _{DESAT} = 100pF, $R_F = 2.1k\Omega$,	
DESAT Input Mute	tdesat(mute)	15	25	40	μs	Rg = 10 Ω , Cg = 10 nF,	20
						Vcc1 = 5.5V, Vcc2 = 30 V	
		15	_	_		T _A =25°C, I _F =10mA ,V _{CM} =1500 V,	21
Output High Level Common	 CMH	10			kV/µs	V _{CC2} =30V, R _F =2.1kΩ, C _F =15 pF	21
Mode Transient Immunity		50	_	_	Κν/μο	A=25°C, I _F =10mA ,V _{CM} =1500 V,	21,26
		30				V_{CC2} =30V, R _F =2.1k Ω , C _F =1nF	21,20
		45		_		T _A =25°C, V _F =0V, V _{CM} =1500V,	22
Output Low Level Common	ICMLI	15	_	_	kV/µs	V_{CC2} =30V, R _F =2.1k Ω , C _F =15 pF	~~
Mode Transient Immunity	CML	50			κν/μs	T _A =25°C, V _F =0V, V _{CM} =1500V,	
		50	-	-		V _{CC2} =30V, R _F =2.1kΩ, C _F =1nF	

Unless otherwise noted, all typical values at $T_A = 25^{\circ}C$, $V_{CC2} - V_{EE} = 30 \text{ V}$, $V_E - V_{EE} = 0 \text{ V}$; all Minimum/Maximum specifications are at Recommended Operating Conditions.

SOP16, 2.5A Output Smart Gate Driver Optocoupler

ISOLATION CHARACTERISTIC							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Withstand Insulation	Viso	5000			V	RH ≤ 40%-60%,	24,25
Test Voltage	VISO	5000	-	-	V	t = 1min, T _A = 25 °C	24,25
Input-Output	R _{I-O}		10 ¹²		Ω	V _{I-O} = 500V DC	25
Resistance	KI-0	-	10	-	22	VI-0 - 300V DC	25

Note1: Derate linearly above 70°C free air temperature at a rate of 0.3 mA/°C.

Note2: In order to achieve the absolute maximum power dissipation specified, pins 4, 9, and 10 require ground plane connections and may require airflow. See the Thermal Model section in the application notes at the end of this data sheet for details on how to estimate junction temperature and power dissipation. In most cases the absolute maximum output IC junction temperature is the limiting factor. The actual power dissipation achievable will depend on the application environment (PCB Layout, air flow, part placement, etc.). See the Recommended PCB Layout section in the application notes for layout considerations. Output IC power dissipation is derated linearly at 10 mW/°C above 90°C. Input IC power dissipation does not require derating.

Note3: Maximum pulse width = 10 μ s. This value is intended to allow for component tolerances for designs with IO peak minimum = 1.0 A. Derate linearly from 2.0 A at +25°C to 1.5 A at +105°C. This compensates for increased I_{OPEAK} due to changes in V_{OL} over temperature.

Note4: This supply is optional. Required only when negative gate drive is implemented.

Note5: Maximum pulse width = $50 \mu s$.

Note6: See the Slow IGBT Gate Discharge During Fault Condition section in the applications notes at the end of this data sheet for further details.

Note7: 15 V is the recommended minimum operating positive supply voltage ($V_{CC2} - V_E$) to ensure adequate margin in excess of the maximum V_{UVLO+} threshold of 12.5 V. For High Level Output Voltage testing, V_{OH} is measured with a dc load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero units.

Note8: Maximum pulse width = 1.0 ms.

Note9: Once V_O of the MPCS-333J is allowed to go high ($V_{CC2} - V_E > V_{UVLO+}$), the DESAT detection feature of the MPCS-333J will be the primary source of IGBT protection. U_{VLO} is needed to ensure DESAT is functional. Once V_{CC2} is increased from 0V to above V_{UVLO+} , DESAT will remain functional until V_{CC2} is decreased below V_{UVLO-} . Thus, the DESAT detection and U_{VLO} features of the MPCS-333J work in conjunction to ensure constant IGBT protection.

Note10: See the DESAT fault detection blanking time section in the applications notes at the end of this data sheet for further details.

Note11: This is the "increasing" (i.e. turn-on or "positive going" direction) of V_{CC2} - V_{E}

Note12: This is the "decreasing" (i.e. turn-off or "negative going" direction) of V_{CC2} - V_E

SOP16, 2.5A Output Smart Gate Driver Optocoupler

Note13: This load condition approximates the gate load of a 1200 V/75A IGBT.

Note14: Pulse Width Distortion (PWD) is defined as |t_{PHL} - t_{PLH}| for any given unit.

Note 15: As measured from I_F to V_O .

Note16: The difference between t_{PHL} and t_{PLH} between any two MPCS-333J parts under the same test conditions.

Note17: As measured from ANODE, CATHODE of LED to Vout.

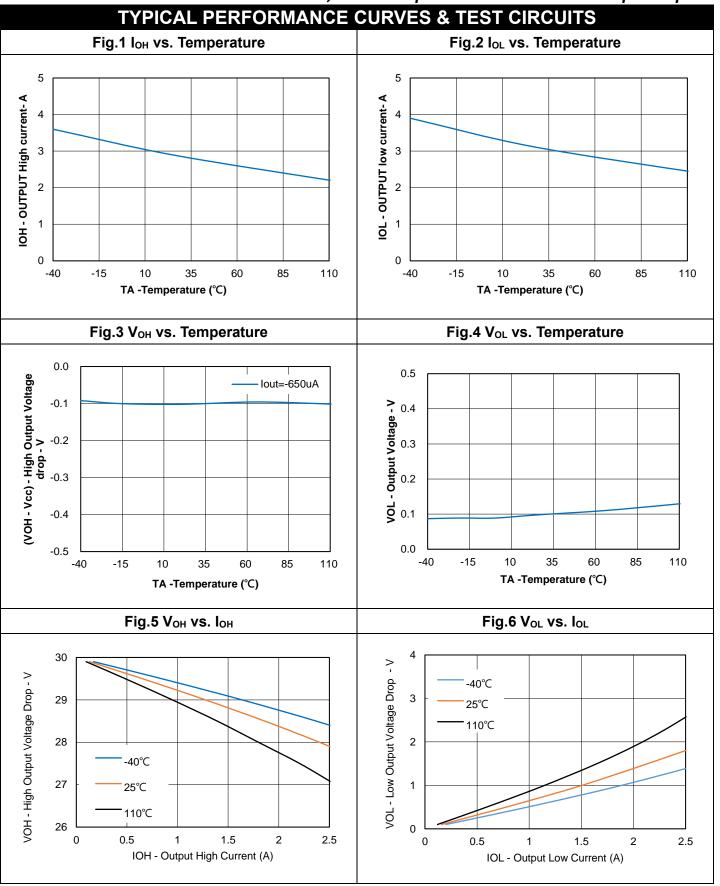
Note18: This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low.

Note19: This is the amount of time the DESAT threshold must be exceeded before V_{OUT} begins to go low, and the FAULT output to go low. This is supply voltage dependent.

Note20: Auto Reset: This is the amount of time when V_{OUT} will be asserted low after DESAT threshold is exceeded. See the Description of Operation (Auto Reset) topic in the application information section.

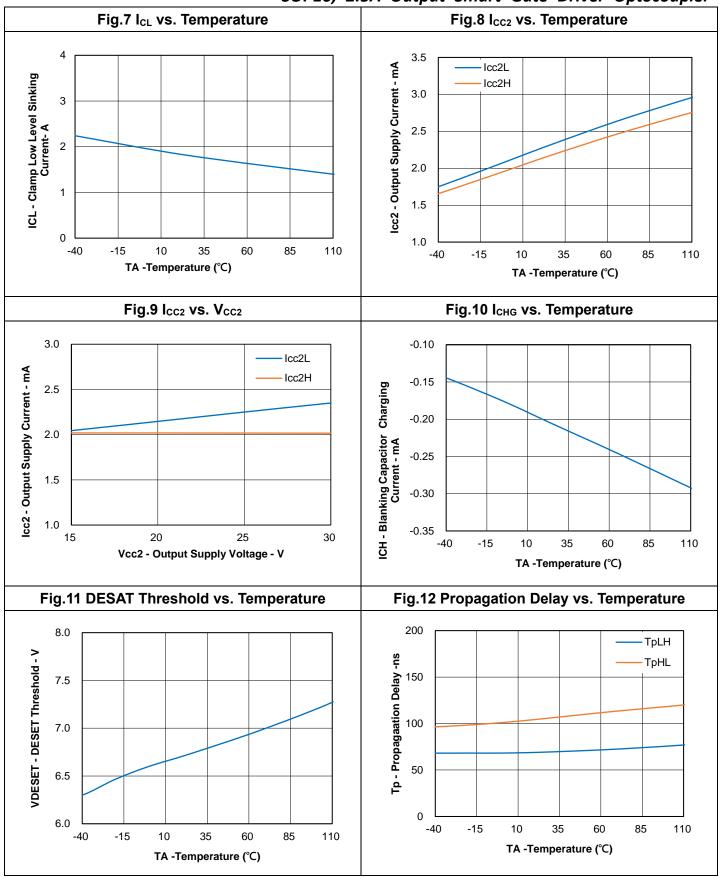
Note21: Common mode transient immunity in the high state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in the high state (i.e., $V_O > 15$ V or FAULT > 2 V).

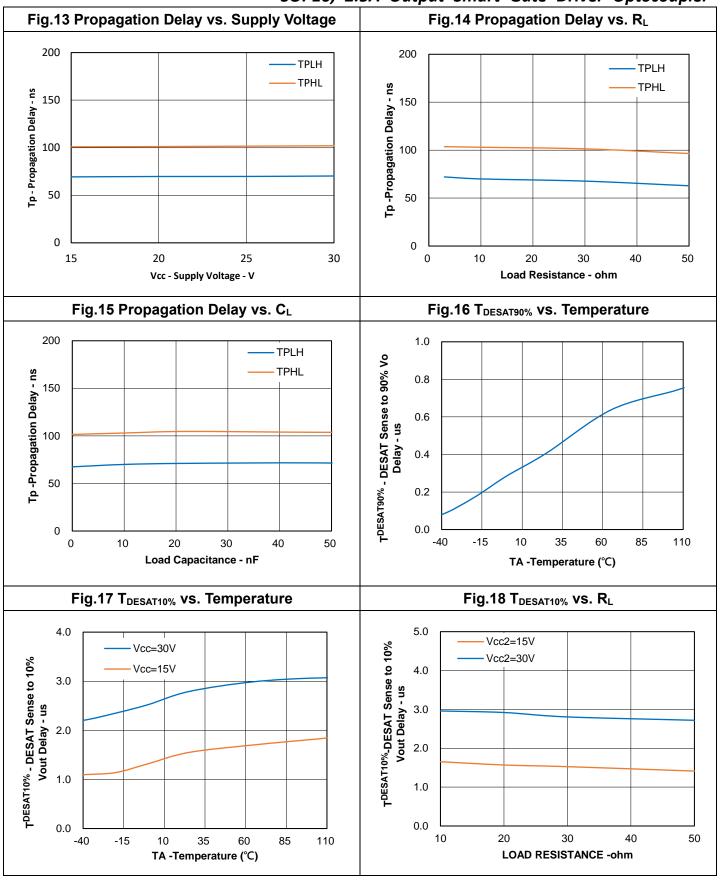
Note22: Common mode transient immunity in the low state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in a low state (i.e., $V_O < 1.0 \text{ V}$ or FAULT < 0.8 V).


Note23: To clamp the output voltage at V_{CC} - 3 V_{BE} , a pull-down resistor between the output and VEE is recommended to sink a static current of 650 μ A while the output is high. See the Output Pull-Down Resistor section in the application notes at the end of this data sheet if an output pull-down resistor is not used. Note24: In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage \geq 6000 Vrms for 1 second. This test is performed before the 100% production test for partial discharge (method b) shown in IEC/EN/DIN EN 60747-5-5 Insulation Characteristic Table.

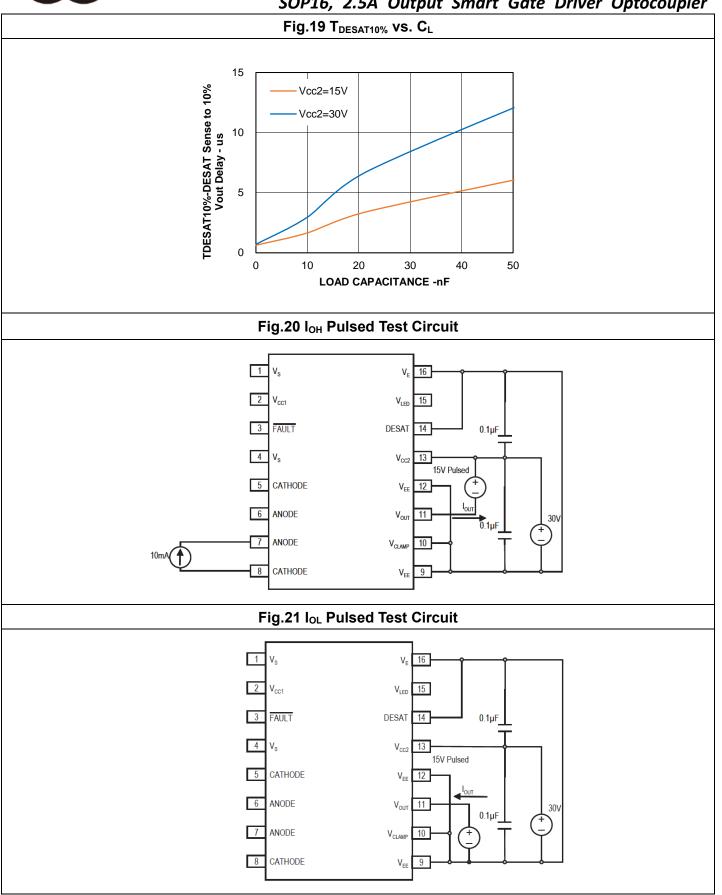
Note25: This is a two-terminal measurement: pins 1-8 are shorted together and pins 9-16 are shorted together.

Note26: Split resistors network with a ratio of 1:1 is needed at input LED1.

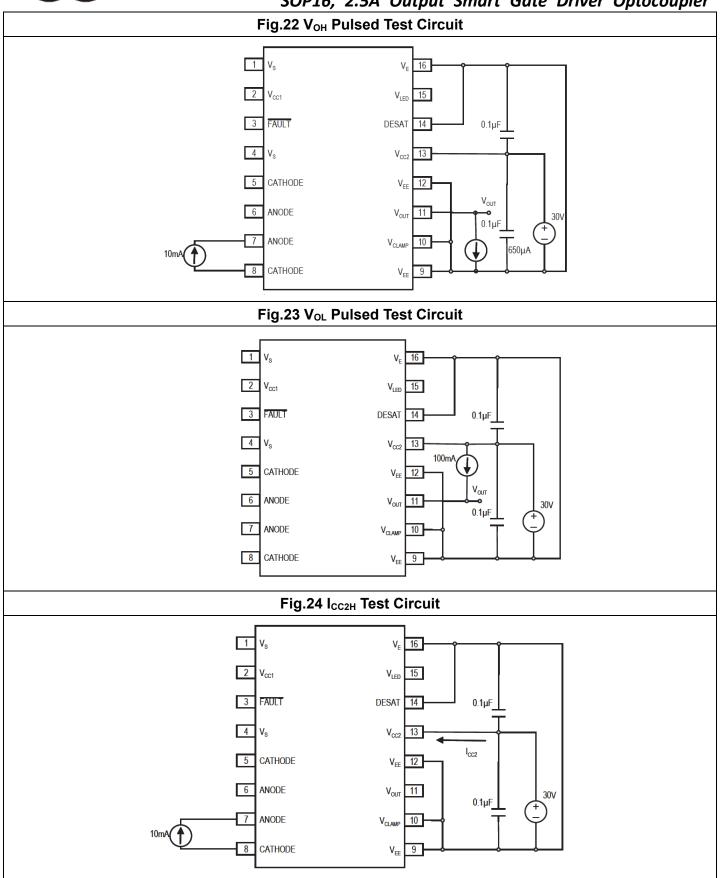




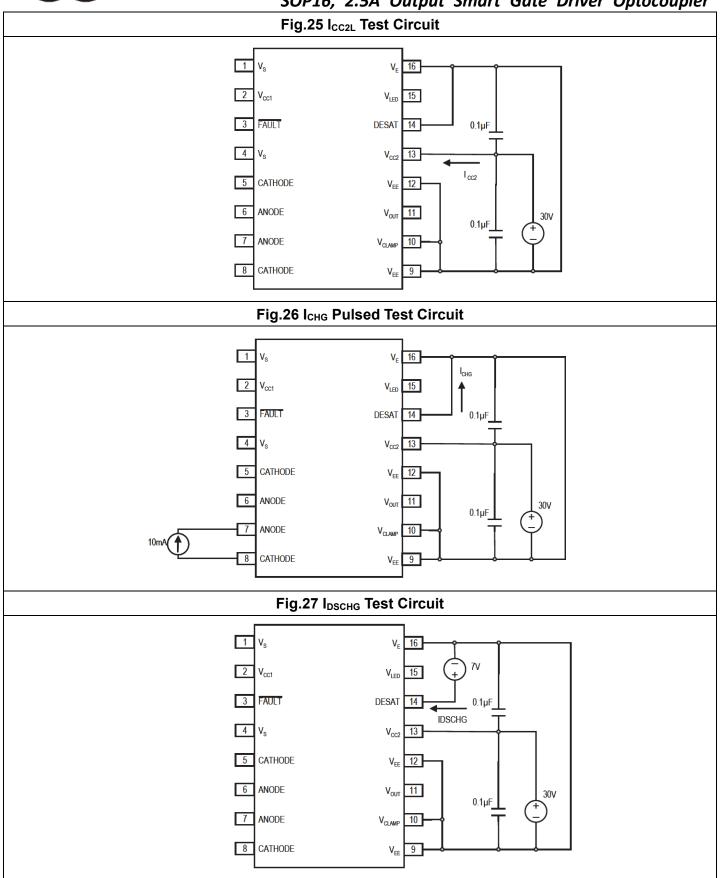
SOP16, 2.5A Output Smart Gate Driver Optocoupler

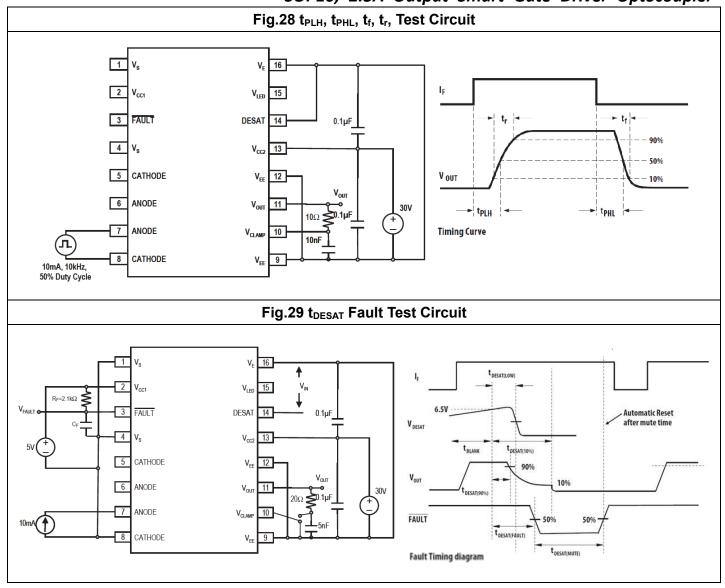


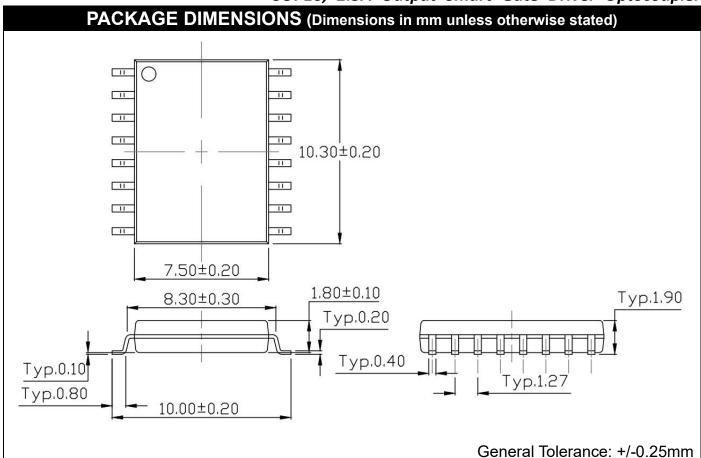
SOP16, 2.5A Output Smart Gate Driver Optocoupler

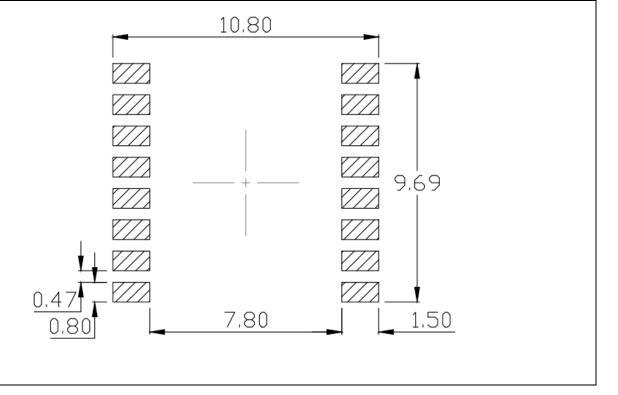


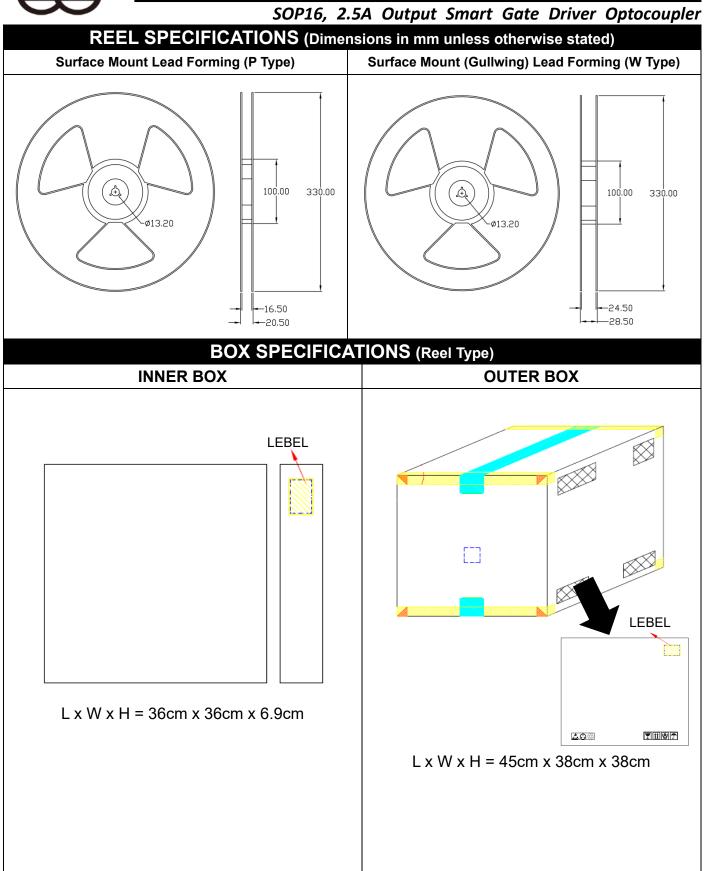
Release Date: 2024/10/15 Rev: 2.0



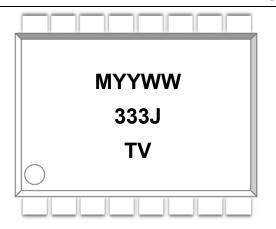





SOP16, 2.5A Output Smart Gate Driver Optocoupler


RECOMMENDED SOLDER MASK (Dimensions in mm unless otherwise stated)

SOP16, 2.5A Output Smart Gate Driver Optocoupler CARRIER TAPE SPECIFIC ATIONS (Dimensions in mm unless otherwise stated) **Option T1 ┌**1.75 - Ø1.50 4.00 --2.00 11,50 24.00 16.00 -**Option T2** -1.75Ø1.50 -2.004.00 -11,50 24.00 16.00 -



SOP16, 2.5A Output Smart Gate Driver Optocoupler

ORDERING AND MARKING INFORMATION

MARKING INFORMATION

: Company Abbr. М ΥY : Year date code WW : 2-digit work week

333J : Part Number

T or H: Factory identification mark : VDE Identification(Option)

ORDERING INFORMATION

MPCS-333J-ZV

MPC - Company Abbr.

S – Stack

333J - Part Number

Z – Tape and Reel Option (T1/T2)

V – VDE Option (V or None)

LABEL INFORMATION

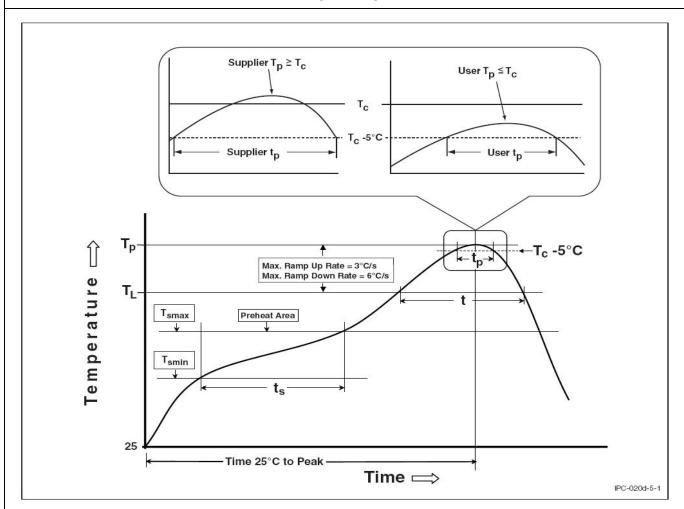
喆光照明光電股份有限公司 WISELITE Optronics Co., Ltd

Part No: XXXXXXXXXXXXXX

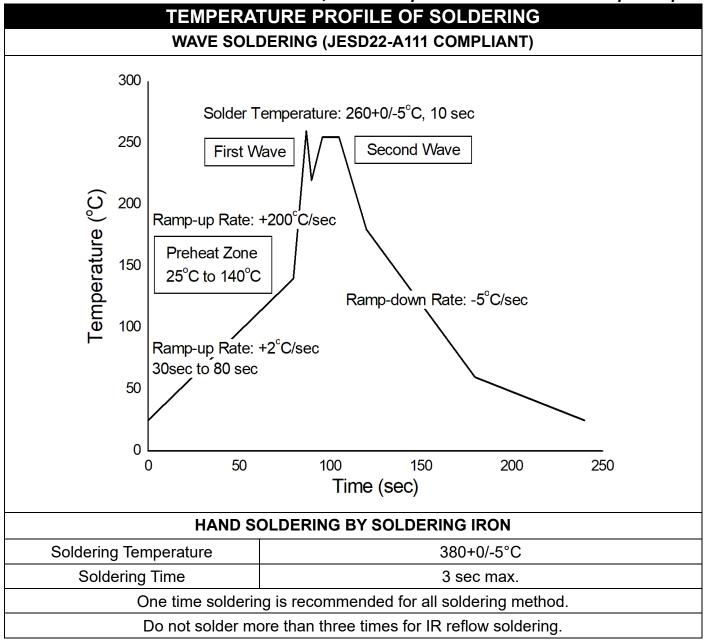
Bin Code: X

Lot No: XXXXXXXXXX

Date Code: XXXX Q'ty: XXXX pcs


PACKING QUANTITY

		•	
Option	Quantity	Quantity – Inner box	Quantity – Outer box
T1/T2	1000 Units/Reel	2 Reels/Inner box	5 Inner box/Outer box = 10k Units


REFLOW INFORMATION

REFLOW PROFILE

Profile Feature	Sn-Pb Assembly Profile	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	100°C	150°C
Temperature Max. (Tsmax)	150°C	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	60-120 seconds
Ramp-up Rate (tL to tP)	3°C/second max.	3°C/second max.
Liquidous Temperature (TL)	183°C	217°C
Time (tL) Maintained Above (TL)	60 - 150 seconds	60 – 150 seconds
Peak Body Package Temperature	235°C +0°C / -5°C	260°C +0°C / -5°C
Time (tP) within 5°C of 260°C	20 seconds	30 seconds
Ramp-down Rate (TP to TL)	6°C/second max	6°C/second max
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

DISCLAIMER

- WISELITE is continually improving the quality, reliability, function and design. WISELITE reserves
 the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- WISELITE makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, WISELITE disclaims (a) any and all liability arising out of the application or use of any product, (b) any and all liability, including without limitation special, consequential or incidental damages, and (c) any and all implied warranties, including warranties of fitness for particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact WISELITE sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary
 over time. All operating parameters, including typical parameters, must be validated in each
 customer application by the customer's technical experts. Product specifications do not expand or
 otherwise modify WISELITE's terms and conditions of purchase, including but not limited to the
 warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.