

Description

The MPC-3120 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AlGaAs LED optically coupled to an integrated circuit with a power output stage. The 3A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the MPC-3120 series can be used to drive a discrete power stage which drives the IGBT gate. The Photocoupler operational parameters are guaranteed over the temperature range from -40° C ~ +110°C.

Features

- ±3 A maximum peak output current
- Rail-to-rail output voltage
- Propagation delay time: TPHL = 300 ns (max), TPLH = 300 ns (max)
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- 35 kV/us minimum Common Mode
 Rejection (CMR) at VCM = 1500 V
- ICC = 3 mA maximum supply current
- Wide operating range: 15 to 30 Volts (VCC)
- Guaranteed performance over temperature
 -40°C ~ +110°C.

Truth Table

LED	Vo
OFF	Low
ON	High

A $0.1\mu F$ bypass capacitor must be connected between Pin 5 and 8.

Applications

- Plasma Display Panel
- IGBT/MOSFET gate drive
- Industrial Inverter
- Induction heating
- Uninterruptible power supply (UPS)

	ABSOLUTE MAX	(IMUM RAT	TINGS		
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	Note
Storage Temperature	Tstg	-40	+125	°C	-
Operating Temperature	Topr	-40	+110	°C	-
Output IC Junction Temperature	τı		125	°C	-
Total Output Supply Voltage	(VCC -VEE)	0	35	V	-
Average Forward Input Current	lf		20	mA	-
Reverse Input Voltage	VR		5	V	-
Peak Transient Input Current	lf(tran)		1.0	А	1
"High" Peak Output Current	IOH(PEAK)		3	А	2
"Low" Peak Output Current	lol(peak)		3	А	2
Output Voltage	VO(PEAK)		35	V	-
Power Dissipation	Pı		45	mW	-
Output Power Dissipation	Po		250	mW	-
Total Power Dissipation	Рт		295	mW	-
Lead Solder Temperature (10s)	Tsol		260	°C	-

Note: Ambient temperature = 25° C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability. Note: Note: A ceramic capacitor (0.1 μ F) should be connected between pin 8 and pin 5 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width (PW) \leq 1 μ s, 300 pps

Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu s$, f $\leq 15 kHz$

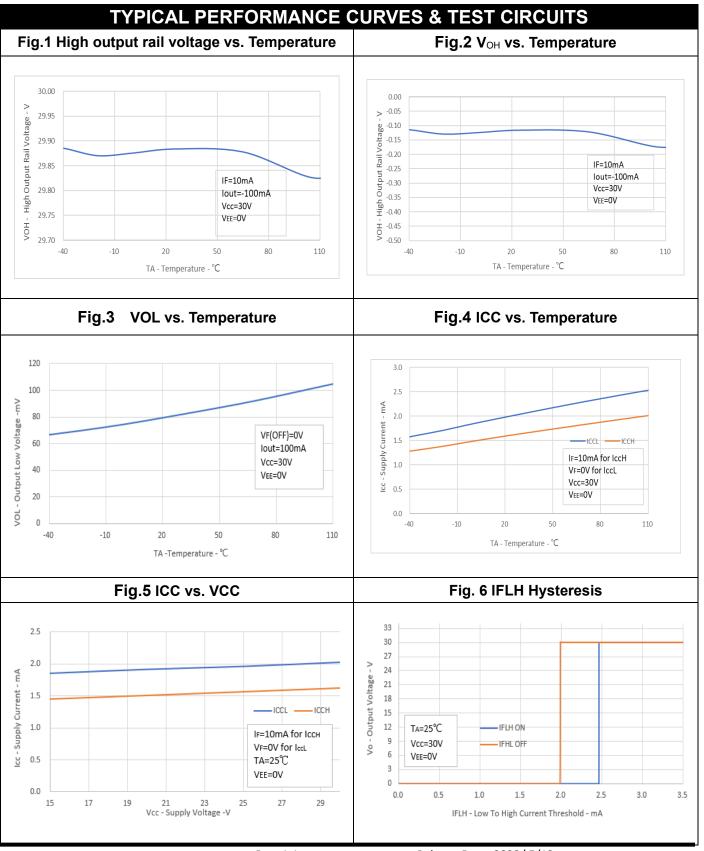
	ELE	CTRIC/	AL OPT	TICAL C	HARA	CTERISTICS	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
INPUT CHARACTERISTICS							
Input Forward Voltage	VF	1.2	1.37	1.8	V	IF = 10mA	-
Input Reverse Voltage	BVR	5	-	-	V	Ir = 10μA	-
Input Threshold Current (Low to High)	lғьн	-	1.5	5	mA	Vcc = 30 V, Vo > 5V	-
Input Threshold Voltage (High to Low)	VFHL	0.8	-	-	V	Vcc = 30 V, Vo < 5V	-
Input Capacitance	Cin	-	33	-	pF	f = 1 MHz, VF = 0 V	-
		C	DUTPUT	CHARAC	CTERISTI	CS	
High Level Supply Current	Іссн	-	1.6	3.0	mA	IF = 10 mA, Vcc = 30V, Vo = Open	-
Low Level Supply Current	ICCL	-	2.0	3.0	mA	IF = 0 mA, Vcc = 30V, Vo = Open	-
High level output current	Іон	-	-	-1.0	А	Vo = (Vcc – 1.5 V)	1
		-	-	-3.0		Vo = (Vcc - 4 V)	2
	1	1.0	-	-		Vo = (VEE + 1.5 V)	1
Low level output current	Іог	3.0	-	-	Α	Vo = (VEE + 4 V)	2
High level output voltage	Vон	Vcc - 0.3	Vcc - 0.15	-	V	IF = 10mA, Io = -100mA	-
Low level output voltage	Vol	-	VEE + 0.1	VEE + 0.25	V	IF = 0mA, Io = 100mA	-
	Vuvlo+	11.0	12.4	13.5	٧	Vo > 5V, IF = 10 mA	
UVLO Threshold	Vuvlo-	9.5	11.1	12.0	V	Vo < 5V, IF = 10 mA	-
UVLO Hysteresis	UVLOHYS	-	1.3	-	V	-	-

All Typical values at TA = 25° C and Vcc – Vee = 30 V, unless otherwise specified;

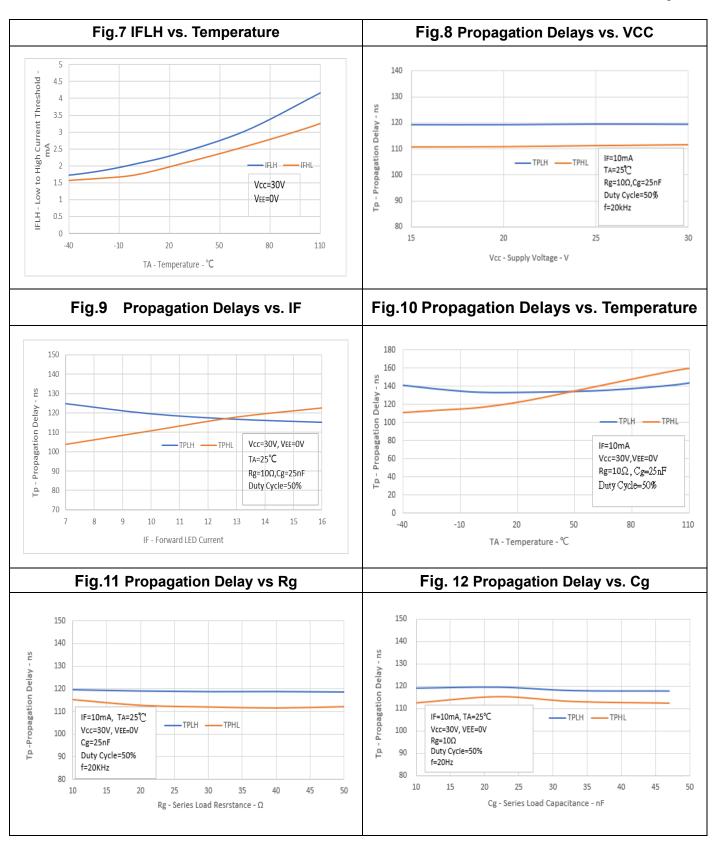
Note 1: Maximum pulse width = $50 \mu s$.

Note 2: Maximum pulse width = $10 \mu s$.

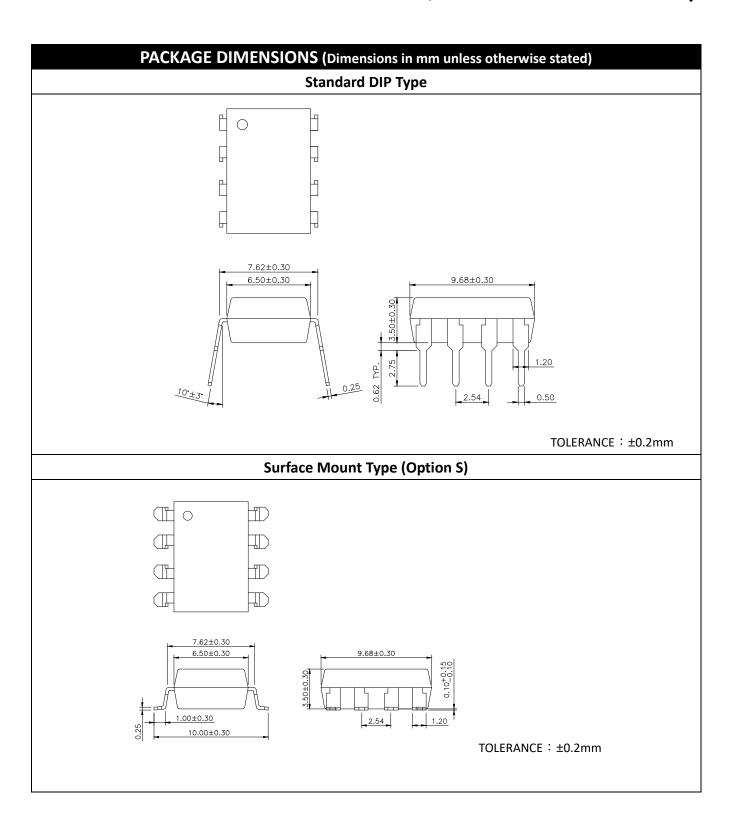
SWITCHING SPECIFICATION							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Propagation Delay Time to High Output Level	tPLH	50	135	300	ns		
Propagation Delay Time to Low Output Level	tPHL	50	140	300	ns	Rg = 10Ω, Cg = 25nF, f = 10 kHz,	
Pulse Width Distortion	PWD		5	100	ns	·	
Propagation delay difference between any two parts or channels	PDD	-100		100	ns	Duty Cycle = 50% IF = 7 to 16 mA, VCC = 10 to 30V VEE = ground	1
Output Rise Time (10 to 90%)	tr		35		ns	VLL - ground	
Output Fall Time (90 to 10%)	tf		35		ns		
Common mode transient immunity at high level output	CM _H	35			KV/us	TA = 25°C, IF = 10 to 16 mA, VCM = 1500 V, VCC = 30 V	2
Common mode transient immunity at low level output	CM _L	35			KV/us	TA = 25°C, VF = 0 V, VCM = 1500 V, VCC = 30 V	3

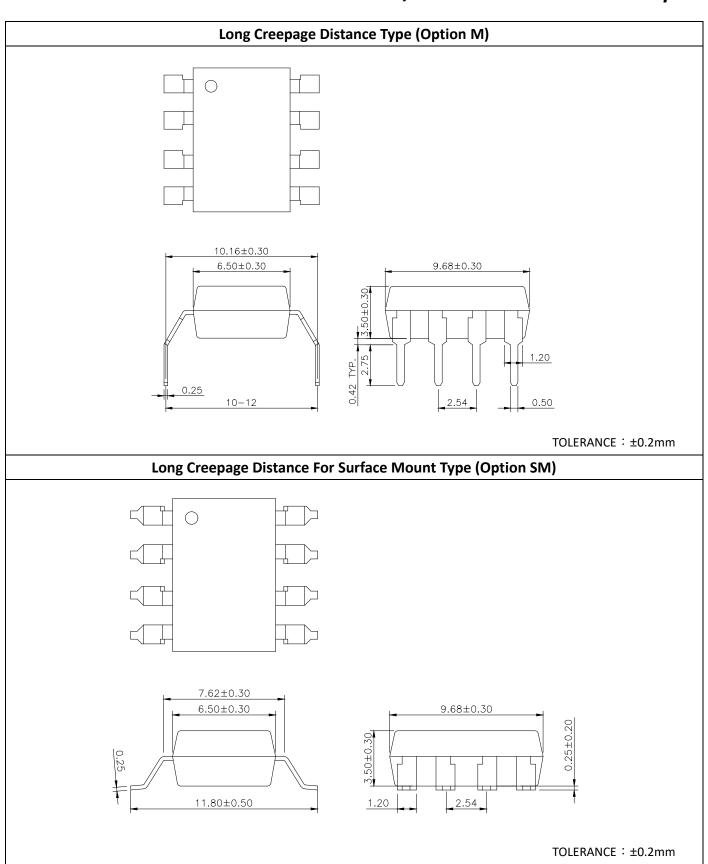

All Typical values at TA = 25°C and VCC – VEE = 30 V, unless otherwise specified;

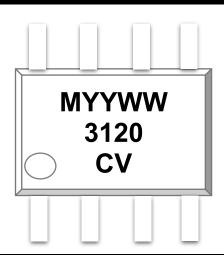
Note 1: The difference between tPHL and tPLH between any two parts under same test conditions.


Note 2: CMH is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state (VO > 15 V).

Note 3: CML is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state (VO < 1 V).







MARKING INFORMATION

M : Company Abbr.YY : Year date codeWW : 2-digit work week

3120 : Part Number

C : Factory identification mark
V : VDE Identification(Option)

ORDERING INFORMATION

MPC-3120XY-ZV

MPC - Company Abbr.

3120 - Part Number

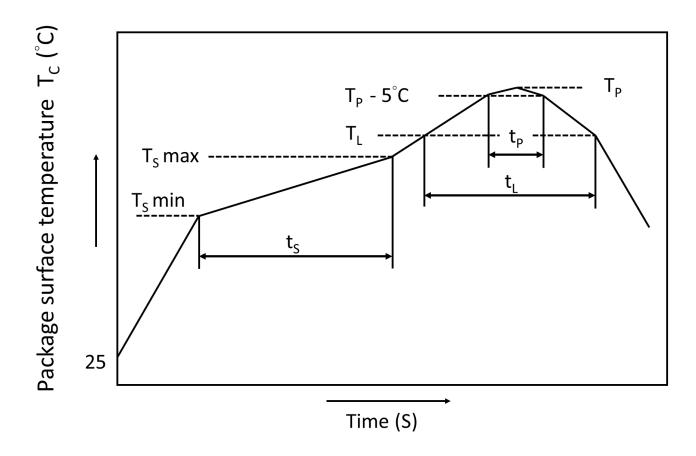
X – UVLO Option (None / L)

Y – Lead Form Option (None / M / S / SM)

(None-7mm Clearance or M-10mm Clearance

or S-10mm Clearance or SM-11.8mm Clearance)

Z – Tape and Reel Option (None /T1/T2)


V – VDE Option (V or None)

Precautions for Soldering

IR Reflow soldering

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

	Symbol	Min	Max	Unit
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	S
Ramp-up rate (T∟ to T _P)			3	°C/s
Liquidus temperature	T∟	2.	17	°C
Time above T∟	t∟	60	100	S
Peak Temperature	T _P		260	°C
Time during which T _C is between (T _P - 5) and T _P	t₽		20	S
Ramp-down rate			6	°C/s

DISCLAIMER

- WISELITE is continually improving the quality, reliability, function and design. WISELITE reserves
 the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- WISELITE makes no warranty, representation or guarantee regarding the suitability of the products
 for any particular purpose or the continuing production of any product. To the maximum extent
 permitted by applicable law, WISELITE disclaims (a) any and all liability arising out of the application
 or use of any product, (b) any and all liability, including without limitation special, consequential or
 incidental damages, and (c) any and all implied warranties, including warranties of fitness for
 particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact WISELITE sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary
 over time. All operating parameters, including typical parameters, must be validated in each
 customer application by the customer's technical experts. Product specifications do not expand or
 otherwise modify WISELITE's terms and conditions of purchase, including but not limited to the
 warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.

版本	生效日期	作者	內容
Rev.	Effective Date	Applicant	Change Description
1.0	2022/4/7	陳秉慈	新制訂
1.1	2022/5/13	陳秉慈	新增 Truth Table