

P
o
rtin

g
 G

u
id

e
MMGG3322FF1100xx

PPoorrttiinngg TToo SSTTMM3322FF1100xx

MMaannuuaall

megawin

VVeerrssiioonn 11..0011

DDaattee 22002222//44//1111

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-2

megawin

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-3

megawin

Index

1. Introduction ... 5

1.1. Document Using ... 5

2. Hardware difference comparison .. 6

2.1. Pin differences comparison .. 6

2.2. Resource comparison .. 6

3. Development environment setup .. 7

3.1. Development IDE for MG32F10x ... 7

3.2. Installation of the development package .. 7

3.3. Build a project .. 8

3.4. Peripheral library configuration ... 14

3.5. Debugger configuration .. 16

3.5.1. Use ST-Link to debug .. 16

3.5.2. Use J-Link to debug ... 19

4. Layout suggestion .. 23

4.1. Printed circuit board ... 23

4.2. Component location ... 23

4.3. Grounding and power supply(VSS/VDD) ... 23

4.4. Decoupling ... 23

4.5. Power supply scheme .. 24

4.6. Other signals .. 24

4.7. Unused IO and its properties .. 24

4.8. Clock .. 25

4.9. Analog signal .. 25

4.10. EMI ... 25

5. Peripheral porting ... 27

5.1. Preparation before porting .. 27

5.2. ADC .. 28

5.3. ANCTL(Analog controller) .. 30

5.3.1. CMP ... 30

5.3.2. DCSS ... 30

5.4. BKP .. 31

5.5. CRC ... 31

5.6. DMAC ... 31

5.7. EXTI ... 33

5.8. FMC(Flash memory controller) ... 34

5.9. GPIO .. 34

5.10. I2C.. 35

5.11. I2S .. 37

5.12. IWDG(independent watchdog) ... 37

5.13. LED .. 39

5.14. NVIC ... 39

5.15. PWR(power control) ... 39

5.16. RCC ... 41

5.17. RNG(Random Number Generator)... 44

5.18. RTC .. 44

5.19. SFM(Special Function Macro) .. 46

5.20. SPI ... 46

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-4

megawin

5.21. SYSTICK .. 47

5.22. TIM ... 49

5.23. UART ... 52

5.24. USB .. 53

5.25. WWDG(window watchdog) .. 55

6. Reversion ... 56

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-5

megawin

1. Introduction

1.1. Document Using

MG32F10x series is the single-chip 32-bit microcontroller based on a high performance Core ARM 32-bit
Cortex™-M3 CPU with embedded Nested Vectored Interrupt Controller (NVIC) launched in 2021 by megawin.
MG32F10x series has the advantages of high performance and strong compatibility of software and hardware.
This document is intended to help users of STM32F10x series chips port to MG32F10x series.

In general, the hardware porting is relatively simple, can be directly replaced from STM32F10x series chips
to MG32F10x series, no need to modify the circuit. However, there are still some differences in the software, so it
needs to be modified in the software. This document will also introduce the details of the software modification.
Please understand if there are any mistakes or omissions.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-6

megawin

2. Hardware difference comparison

2.1. Pin differences comparison

The following table shows the pin differences between MG32F10x series and STM32F10x series.

 Chip

Package MG32F10x STM32F10x

LQFP48 Fully compatible with pin position and function

LQFP64 Fully compatible with pin position and function

2.2. Resource comparison

The following table shows the differences of hardware resources between MG32F10x series and
STM32F10x series.

MG32F103 MG32F104 STM32F103

Core Cortex-M3 Cortex-M3 Cortex-M3

Flash 96K~128K 256K 16K~1M

RAM 28K 36K 6K~96K

Frequency 72MHz 96MHz 72MHz

Access Flash wait state Cache,no wait cycle Cache,no wait cycle 2 cycle

Flash write/erase cycle 100k cycle 100k cycle 10k cycle

TIMER 4 4 4/5/8

U(S)ART 3 3 2/3/5

I2C 2 2 1/2

SPI 2 2 1/2/3

I2S 0~1 0~1 2

CAN -- -- 1

USB Device Device Device

SDIO -- -- 1

ADC 1(10~16) 1(10~16) 2(10)/2(16)/3(21)

CMP 2 2 --

LED Driver 8 Segment 8 Segment --

Active Power 100uA/MHz @3.3V 100uA/MHz @3.3V 292uA/MHz @3.3V

Sleep 5mA 5mA 5.5mA

Stop 30uA 30uA 24uA

Standby 4.5uA 4.5uA 2uA

Vbat 1.2uA 1.2uA 1.4uA

<Note>
Flash write/erase cycle: When MCU is running, operations involving Flash access, such

as reading instructions and variables, need the wait cycle. The

longer wait cycle, the lower the actual operation efficiency.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-7

megawin

3. Development environment setup

3.1. Development IDE for MG32F10x

The development of MG32F10x series needs to use the Keil 5 MDK for ARM version. The Keil 5.26 and
above version must be installed. If the version is too low, it will be impossible to identify the development
package installation program.

3.2. Installation of the development package

Open Megawin.CM3.DFP.1.0.0.pack.

Click Next, and wait for finish.

[Notify]：If the installation package shown in the figure above cannot be opened, the Keil version is too early

to run. Use a newer version of Keil.

MG32F10x series MCU of megawin can be selected for development after successful installation.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-8

megawin

3.3. Build a project

1) New a folder named “Template” to contain project.

2) New Libraries, Project and User subfolder in Template folder. (User can also customize their own folder
structure)

3) Copy MG32F10x standard peripheral library’s Libraries folder’s content to Template\Libraries.

4) Copy MG32F10x standard peripheral library’s Project\MG32F10x_StdPeriph_Template folder’s content to
Template\User.

5) Open Keil MDK, New uVision project.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-9

megawin

6) New a project named Template at Template\Project path.

7) Select device which you need in this project, then click OK.

8) Then it will show Manage Run-Time Environment window. Click Cancel.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-10

megawin

9) New 3 groups: CMSIS, User and StdDriver.

10) Add peripheral library file into Group

Add in CMSIS Group:

Template\Libraries\CMSIS\Device\MG\MG32F10x\startup\arm\startup_mg32f10x.s
Template\Libraries\CMSIS\Device\MG\MG32F10x\system_mg32f10x.c

Add in User Group:

Template\User\main.c

Template\User\mg32f10x_it.c

Add in StdDriver Group Group:

Template\Libraries\MG32F10x_StdPeriph_Driver\src folder’s every .c file.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-11

megawin

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-12

megawin

11) Final project structure as below:

12) Open Options for Target window.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-13

megawin

13) Configure Read/Only Memeory Areas and Read/Write Memory Areas (Configure Flash and SRAM start
address and size).

14) Configure project head file path in C/C++ tab.

Add 4 path as below:

..\Libraries\CMSIS\Include

..\Libraries\CMSIS\Device\MG\MG32F10x

..\Libraries\MG32F10x_StdPeriph_Driver\inc

..\User

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-14

megawin

15) Add define in Preprocessor Symbols: USE_STDPERIPH_DRIVER,MAINCLK_FREQ_72MHz,

HSE_VALUE=12000000

Click OK. So far, the project configuration is completed.

3.4. Peripheral library configuration

1) startup_mg32f10x.s could be used for configure application stack and heap size as below.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-15

megawin

2) Two macro definition in mg32f10x.h should be noticed.

USE_STDPERIPH_DRIVER This macro definition represents that this application will use standard driver,
and this project will include mg32f10x_conf.h head file.

HSE_VALUE This macro definition is used for define MG32F10x Xtal’s frequency. Peripheral library will set

external HSE Xtal frequency is 8MHz by default. User should modify this definition here or at the

preprocessor symbol if the Xtal which is using is not 8MHz.

3) Some macro definition in system_mg32f10x.c should be noticed.

MAINCLK_FREQ_* This macro definition is used for configure the main clock frequency of MCU. Only

one of the definitions can be selected at the preprocessor symbol (If no definition is selected, the chip main

clock would be MHSI). Should be noticed that all these frequency definitions have requirements for the

Xtal of MCU. For example, the Xtal frequency must be 6/12MHz when user select

MAINCLK_FREQ_72MHz(Notify: macro definition HSE_VALUE should also be modified).

VECT_TAB_SRAM This macro definition represents that interrupt vector will be mapping to SRAM. (Only

while the project needs to be run in SRAM)

VECT_TAB_OFFSET This macro definition is used for configure interrupt vector table start address offset.
(related to Flash or SRAM start address)

3.5. Debugger configuration

3.5.1. Use ST-Link to debug

1) MG32F10x is embedded a CPU core of ARM Cortex-M3 processor. So MG32F10x supports kinds of

debugger which support Cortex-M3 core MCU (such as: JLink, ULink, STLink and CMSIS-DAP). Take

ST-link as example to demonstrate the MG32F10x debugging configuration.

2) Connect ST-Link to PC, connect ST-Link and MG32F10x through SWD interface. Power

on the MCU.

3) Open Options for Target window, switch to Debug tab, select ST-Link debger.

4) Setting debugger configuration.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-17

megawin

Select SW Port, then MG32F10x should be detected by ST-Link and be seen on SW Device.

Then click OK.

5) Refer to the figure below to configure Utilities tab.

Then click Settings button, switch to Flash Download tab, and configure as below.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-18

megawin

Find the device you need and click Add.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-19

megawin

Click OK.Now user should be able to compile, download and debug their own code.

3.5.2. Use J-Link to debug

1) New a folder named “Megawin” under J-Link installed path H:\Program Files

(x86)\SEGGER\JLink_V635g\Devices (J-link installed path could be modified, and the demo machine of this

document is installed on disk H). Then new a folder named “MG32F10x” under “Megawin” folder.

2) Copy MG32F10x Flash algorithm to J-Link installed path H:\Program Files

(x86)\SEGGER\JLink_V635g\Devices\Megawin\MG32F10x. Flash algorithm would be located under users’ Keil

installed path\Keil_v5\ARM\PACK\Megawin\CM3_DFP\1.0.0\Flash

3) Open J-link devices file on H:\Program Files (x86)\SEGGER\JLink_V635g\JLinkDevices.xml and add

MG32F10x information as below, then save.
<Device>
 <ChipInfo Vendor="Megawin" Name="MG32F103C9T6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
 <FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x18000" Loader="Devices\Megawin\MG32F10x\MG32F103C9T6.FLM"

LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />
 </Device>
 <Device>
 <ChipInfo Vendor="Megawin" Name="MG32F103CBT6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
 <FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x20000" Loader="Devices\Megawin\MG32F10x\MG32F103CBT6.FLM"

LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-20

megawin
 </Device>
 <Device>
 <ChipInfo Vendor="Megawin" Name="MG32F103RBT6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
 <FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x20000" Loader="Devices\Megawin\MG32F10x\MG32F103RBT6.FLM"

LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />
 </Device>
 <Device>
 <ChipInfo Vendor="Megawin" Name="MG32F104RCT6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
 <FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x40000" Loader="Devices\Megawin\MG32F10x\MG32F104RCT6.FLM"

LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />

</Device>

Then open Keil project, open options for Target window and press Settings button after select J-Link on Debug tab.

If J-link is connected to PC and J-Link driver is installed sucessfully, you shall see the window as below.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-21

megawin

If you click Settings and keil promopts something like The selected device xxx is unknown, this problem should be

caused by J-link driver mismatch in Keil. So let's just substitute it.

Picture below on the left shows the J-Link driver path which is installed with Keil, and the picture on the right is the

J-Link driver path installed and configured according to chapter 1 by ourself. Now We cover the J-Link driver which is

installed with Keil with everything in our installed J-link directory. After cover completed, reopen Settings in Debug

tab, you shall see the window normally.

Select Flash Download tab, select the chip you need, you shall be able to debug.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-22

megawin

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-23

megawin

4. Layout suggestion

4.1. Printed circuit board

For technical reasons, it is preferable to use a multilayer PCB with a dedicated independent grounding layer

(VSS) and dedicated independent power supply layer (VDD) to provide better coupling and shielding effect. In

many applications, limited by economic conditions that cannot use such printed circuit boards, so it is necessary

to ensure a good grounding and power supply structure.

4.2. Component location

In order to reduce cross-coupling on the PCB, different circuits need to be separated according to their

impact on EMI when designing the layout. For example, high current circuits, low voltage circuits and digital

devices.

4.3. Grounding and power supply(VSS/VDD)

Each module (noisy circuits, low sensitivity circuits, digital circuits) should be grounded individually, and all

the ground should eventually be connected at one point. Avoid or minimize loop areas. To reduce the area of the

power supply loop, the power supply should be as close to the ground as possible. This is because the power

supply loop acts as an antenna, acting as a transmitter and receiver of EMI. Areas of the PCB without

components need to be filled to provide good shielding (especially for single-layer PCB).

4.4. Decoupling

All pins need to be properly connected to the power supply. These connections, including pads, wires and

Vias, shall have as little impedance as possible. A common approach is to increase the width of the line,

including the use of a separate supply layer in a multi-layer PCB. At the same time, each power pin on the

MG32F10x should be paralleled with a decoupled filter ceramic capacitor C(100nF) and chemical capacitor

C(10μF). These capacitors should be as close to the power/ground pins as possible; Or on another layer of the

PCB, under the power/ground pin. Typical values range from 10nF to 100nF, depending on the needs of

practical applications. Figure 1 shows a typical layout of such power/ground pins.

Figure 1 typical layout of VDD /VSS pins

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-24

megawin

4.5. Power supply scheme

The circuit is powered by a stable power supply VDD.

● Notify:

 ─ If ADC is used, the VDD range must be between 2.4V and 3.6V

 ─ If ADC is not used, the VDD ranges from 2V to 3.6V

● The VDD pins must be connected to a VDD power supply with external stabilized capacitors (11 100nF

ceramic capacitors and one tantalum capacitor (4.7μF minimum, 10μF typical)).

● The VBAT pin must be connected to an external battery (1.8V < VBAT < 3.6V). If no external battery is

available, this pin must be connected to the VDD power supply along with a 100nF ceramic capacitor

● VDDA pins must be connected to two external stabilized capacitors (10nF ceramic capacitor +1μF

tantalum capacitor).

● VREF+ pins can be connected to VDDA external power supplies. If a separate external reference voltage

is used on VREF+, a 10nF and a 1μF capacitor must be connected to the pins. In all cases, VREF+ must be
between 2.4V and VDDA.

Figure 2 power supply scheme

Note 1. Optional. If a separate external reference voltage is used on VREF+, two capacitors (10nF and 1uF)
must be connected.

Note 2. VREF+ connect to VDDA or VREF 。

4.6. Other signals

In practical applications, EMC performance can be improved by paying attention to the following points:

● Signals that are affected by temporary disturbances (such as interrupt or shaking signals, rather than LED

commands)

 For these signals, laying the ground around the signal line, shortening the line distance, eliminating

adjacent noise and sensitive wiring can improve EMC performance.

 For digital signals, the best possible signal-property margin must be achieved to effectively distinguish

between the two logical states (Raise logic '1' as high as possible and lower logic '0' as low as possible). A slow

Schmidt trigger is recommended to eliminate the parasitic state.

● When wiring, the 3W principle should be met as far as possible, and the wiring should be kept away from

adjacent lines as far as possible to reduce coupling and interference. If ADC and CMP require high precision, the

wire of ADC and CMP should be around with ground.

● Noise signal (clock, etc.)

● Sensitive signal (high resistance, etc.)

4.7. Unused IO and its properties

All microcontrollers are designed for a variety of applications, and common applications do not use all

microcontroller resources.

To improve EMC performance, unused clocks, timers, or I/O pins need to be handled accordingly. For example,

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-25

megawin

I/O ports should be set to '0' or '1' (pull-up or pull-down for unused I/O pins). Modules that are not used should be

disabled.

4.8. Clock

To minimize parallel wiring between LSE and HSE. In figure 3, LSE and HSE are directly separated when
they are led out from the pad.

Figure 3 LSE and HSE layout

4.9. Analog signal

The analog signal is separated from the digital signal, and the analog signal needs to be shielded by the
ground line, so that the sampling accuracy can be guaranteed as much as possible.

4.10. EMI

1. Make sure the power rating is suitable for the application and is optimized using a decoupling capacitor.

2. Provide sufficient filter capacitors on the power supply. High capacity/bypass and decoupling capacitors
shall have low equivalent series inductance (ESL).

3. Create a ground plane if space is available on the wiring layer. These ground areas are connected to the

ground plane through Vias.

4. Keep the current loop as small as possible. Add as many decoupling capacitors as possible.

5. The differential line pair must match the line length, otherwise it will result in timing offset, reduced signal
quality, and increased EMI.

6. Differential routing is required to be on the same plate layer, because the impedance and hole difference

between different layers will reduce the effect of differential mode transmission and introduce common mode noise.

7. Do not have Vias for high-speed signal routing. Ensure that the ground plane at the rear is complete, and
shorten the wires routing distance away from adjacent wires. If the USB interface chip needs a series end resistor or
D line is connected to a pull resistor. Be sure to place these resistors as close to the chip as possible.

8. The power pin of each VDD in MCU should leave 2 capacitor: 1uF and 0.1uF as far as possible

9. SPI or IIC communication line, each signal line string a resistance of about 10R, reserved a 120PF

capacitor. The signal line should be as short as possible.

10. Crystal wiring should be short enough, do not route the signal line on the back of the crystal, to ensure that
the crystal ground plane is complete. If the layout allows, more ground Vias should be drilled around the crystal
oscillator.

Schematic diagram design reference.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-26

megawin

1. The pull up of DP wire needs to be controlled by triode. Make sure the circuit to the DP line is short

enough.
2. The D1, D2 and D3 TVS need to be placed close to the USB port.
3. PIN1 is the power supply, a 10uF and 10nF should be placed near to PIN1 for filtering.

4. The distance between DP DN and USB port should be as short as possible.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-27

megawin

5. Peripheral porting

5.1. Preparation before porting

Users can use MG32F10x to replace STM32F10x chips of the same type for learning or product program

transplantation, which greatly reduces user cost.

On the other hand, MG32F10x series are independently designed chips, and the underlying design and

library function package are bound to have many differences with STM32F10x. When writing programs, the

programs realized on STM32F10x can not be simply and brutally transplanted directly to MG32F10x, and simple

modifications should be made according to the MG driver library. Requires users to pay a low cost of learning

and time. But don't worry, only need to modify the part involves the MCU register access related part of the code,

the software algorithm, the upper structure, variables such as the main content of the code is not need to change,

that is to say, you need to modify, contains only use to replace the peripheral initialization, interrupt function

structure and the code involves driving function of peripheral data reading and writing, It's not going to be a big

change.

Users who familiar with STM32F10x can be according to the MG32F10x reference manual, firmware library
guide and firmware library to the routine quickly start.

When migrating software, refer to Build a project section and associate header files.

[Notify]: The sample code provided in the development kit almost all use XTAL as the clock source by
default, so if you want to develop with XTAL, please refer to the RCC section of the Software porting chapter to
change this.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-28

megawin

5.2. ADC

As for the ADC initialization part, we can refer to the relevant ADC sample code to replace the underlying
driver of the related ADC initialization and ADC value acquisition of STM32F10x as a whole. The driver used is
located at mg32f10x_pwr.c, mg32f10x_adc.c, mg32f10x_rcc.c, mg32f10x_anctl.c and mg32f10x_gpio.c. Please
note to add driver files.

 /* ADC configuration ---*/

 PWR_UnlockANA();

 ANCTL_SARADCCmd(ENABLE);

 PWR_LockANA();

 ADC_InitStructure.ADC_ScanConvMode = DISABLE;

 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;

 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;

 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;

 ADC_InitStructure.ADC_NbrOfChannel = 1;

 ADC_Init(&ADC_InitStructure);

 /* ADC regular channel3 configuration */

 ADC_RegularChannelConfig(ADC_Channel_3, 1, ADC_SampleTime_7Cycles5);

 /* Enable EOC interrupt */

 ADC_ITConfig(ADC_IT_EOC, ENABLE);

 /* Enable ADC external trigger conversion */

 ADC_ExternalTrigConvCmd(ENABLE);

 /* Enable ADC */

 ADC_Cmd(ENABLE);

 /* Start ADC calibration */

 ADC_StartCalibration();

 /* Check the end of ADC calibration */

 while(ADC_GetCalibrationStatus());

 /* Enable ADC reset calibration register */

 ADC_ResetCalibration();

 /* Check the end of ADC reset calibration register */

 while(ADC_GetResetCalibrationStatus());

/* Start ADC Software Conversion */

ADC_SoftwareStartConvCmd(ENABLE);

/* Waiting for EOC */

 while(ADC_GetFlagStatus(ADC_FLAG_EOC) != SET){}

X= ADC_GetADValue(ADC->DR); // Read ADC value

[Notify]: Do not read ADC values by directly reading the ADC data register. This will result in incorrect
values. Please use driver ADC_GetADValue(uint16_t data);to read ADC value.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-29

megawin

Interrupt function structure template:

void ADC_IRQHandler(void)

{

 if(ADC_GetITStatus(ADC_IT_EOC) != RESET)

 {

 ADC_ClearITPendingBit(ADC_IT_EOC);

 printf("\rADC Channel 3: %-5d", ADC_GetADValue(ADC->DR));

 }

}

In addition, for the wiring of analog signals, it is recommended to separate analog signals from digital
signals, and analog signals need to be shielded by ground lines, as mentioned in the previous section of
hardware layout suggestions, so as to ensure the sampling accuracy as much as possible.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-30

megawin

5.3. ANCTL(Analog controller)

5.3.1. CMP

Analog comparator is a very useful peripheral that is not included in the STM32F10x series. The sample
code is located in ANCTL\CMP. User can call the function in it. The driver used is located at mg32f10x_pwr.c,
mg32f10x_rcc.c, mg32f10x_anctl.c and mg32f10x_gpio.c. Please note to add driver files.

 PWR_UnlockANA();

 ANCTL_CMPAConfig(CMPA_PSEL_PB4, CMPA_NSEL_PB6);

 ANCTL_CMPACmd(ENABLE);

 PWR_LockANA();

CMP_Result = ANCTL_CMPAGetOutputLevel();//Read output level

The code above sets the positive and negative input of the comparator and completes the initialization of
CMP.

[Notify]: There is no interrupt function in CMP.

5.3.2. DCSS

DCSS is a clock safety system that starts to work when HSE is stable and stops working when HSE stops. It
can be used as a detector of XTAL failed event. So if there is a requirement of detect XTAL failed event from
user, refer to the code below and replace the underlying driver of the related initialization of STM32F10x as a
whole. The driver used is located at mg32f10x_pwr.c, mg32f10x_rcc.c, mg32f10x_anctl.c and mg32f10x_gpio.c.
Please note to add driver files.

RCC_DCSSCLKCmd(ENABLE);

 ANCTL_ClockSecuritySystemCmd(ENABLE);

Interrupt function structure template:

void NMI_Handler(void)

{

 if (ANCTL_GetITStatus(ANCTL_IT_DCSS) != RESET)

 {

 ANCTL_ClearITPendingBit(ANCTL_IT_DCSS);

 while (1)

 {

 /* LED2 blink */

 GPIO_ToggleBits(GPIOB, GPIO_Pin_13);

 Delay(100000);

 }

 }

}

Through the code above to enable DCSS.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-31

megawin

5.4. BKP

BKP is the data backup register which can store some backup data. Since the backup domain (BKP) is still
powered by VBAT when VDD is turned off, its contents are not lost if there is a battery is connected to the VBAT
pins. It’s simple to use by directly store value after enable the register. The driver used is located at
mg32f10x_pwr.c, mg32f10x_rcc.c and mg32f10x_bkp.c. Please note to add driver files.

PWR_BackupAccessCmd(ENABLE);

 BKP->DR1 = 0x55AA; //Store value 0x55AA into BKP

5.5. CRC

It’s simple to use CRC by directly use the function in driver after enable CRC. User can user the Deinit()
below to replace the underlying driver of the related initialization of STM32F10x as a whole. Use the CRC check
function when you need to calculate. The driver used is located at mg32f10x_crc.c, mg32f10x_rcc.c,
mg32f10x_sfm.c, computeBytes.c, computeHalfWords.c and computeWords.c. Please note to add driver files.

CRC_SFM_DeInit();

result1 = CRC8_ComputeBytes(bytes, _countof(bytes));

5.6. DMAC

Direct memory access (DMA) is used to provide high-speed data transfer between peripherals, between
peripherals and memory, or between memory and memory without CPU process. That allows CPU to finish
other mission while DMA is working. User can refer actual situation to replace the underlying driver of the related
initialization of STM32F10x as a whole. The driver used is located at mg32f10x_rcc.c and mg32f10x_dmac.c.
Please note to add driver files.

The actual porting code can refer to the DMAC sample code.

 DMAC_ChannelCmd(DMAC1, DMAC_Channel_0, ENABLE);

Call the function above after finish the initialization of DMA. Modify the channel and module, then the DMA 初始
transmission should be started.

Interrupt function structure template:

void DMAC1_IRQHandler(void)

{

 if(DMAC_GetITStatus(DMAC1, DMAC_Channel_0, DMAC_IT_BLOCK) != RESET)

 {

 DMAC_ClearITPendingBit(DMAC1, DMAC_Channel_0, DMAC_IT_BLOCK);

 printf("DMA block transfer complete.\r\n");

 }

 if(DMAC_GetITStatus(DMAC1, DMAC_Channel_0, DMAC_IT_TFR) != RESET)

 {

 DMAC_ClearITPendingBit(DMAC1, DMAC_Channel_0, DMAC_IT_TFR);

 printf("DMA transfer complete.\r\n");

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-32

megawin

 if(memcmp(memDst, memSrc, sizeof(memSrc)) == 0) {

 printf("DMA transfer success!!!\r\n");

 }

 else {

 printf("DMA transfer failed!!!\r\n");

 }

 }

 if(DMAC_GetITStatus(DMAC1, DMAC_Channel_0, DMAC_IT_ERR) != RESET)

 {

 DMAC_ClearITPendingBit(DMAC1, DMAC_Channel_0, DMAC_IT_ERR);

 printf("DMA transfer error!!!\r\n");

 }

}

[Notify]: Strongly suggest not to use DMAC to do the ADC, and ADC is only supported in single DMA mode.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-33

megawin

5.7. EXTI

External interrupt EXTI support defferent interrupt or event, and support rising, falling edge or both edge
trigger. Code below shows the configuration of EXTI. User can refer actual situation to replace the underlying
driver of the related initialization of STM32F10x as a whole. The driver used is located at mg32f10x_rcc.c,
mg32f10x_exti.c and mg32f10x_gpio.c. Please note to add driver files.

 /* Connect EXTI0 Line to PA0 pin */

 GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0);

 /* Configure EXTI0 line */

 EXTI_InitStructure.EXTI_Line = EXTI_Line0;

 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;

 EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;

 EXTI_InitStructure.EXTI_LineCmd = ENABLE;

 EXTI_Init(&EXTI_InitStructure);

 /* Configure and enable EXTI0 interrupt */

 NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

 NVIC_Init(&NVIC_InitStructure);

Replace the external interrupt initialization of the code and refer to actual situation to select the event trigger
and pin.

Interrupt function structure template:

void EXTI0_IRQHandler(void)

{

 if(EXTI_GetITStatus(EXTI_Line0) != RESET)

 {

 /* Toggle LED1 */

 GPIO_ToggleBits(GPIOB, GPIO_Pin_14);

 /* Clear the EXTI line 0 pending bit */

 EXTI_ClearITPendingBit(EXTI_Line0);

 }

}

Another interrupt function structure template:

void EXTI9_5_IRQHandler(void)

{

 if(EXTI_GetITStatus(EXTI_Line6) != RESET)

 {

 /* Toggle LED2 */

 GPIO_ToggleBits(GPIOB, GPIO_Pin_13);

 /* Clear the EXTI line 6 pending bit */

 EXTI_ClearITPendingBit(EXTI_Line6);

 }

}

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-34

megawin

5.8. FMC(Flash memory controller)

FMC is Flash memory controller which is used to modify flash data. There are two sample code in SDK as
below. The first one is calculate the flash CRC while the second is programming flash data.User can refer actual
situation to replace the programming flash code. The driver used is located at mg32f10x_pwr.c, mg32f10x_rcc.c,
mg32f10x_anctl.c and mg32f10x_fmc.c. Please note to add driver files.

 /* Before flash operation, FHSI must be enabled */

 PWR_UnlockANA();

 ANCTL_FHSICmd(ENABLE);

 PWR_LockANA();

 /* Erase the specified FLASH page */

 FMC_ErasePage(TEST_PAGE_ADDR);

 /* Clear page latch */

 FMC_ClearPageLatch();

 /* Write data to page latch */

 for(iter = 0; iter < 64; iter++) {

 FMC->BUF[iter] = 0x12345678 + iter;

 }

 /* Program data in page latch to the specified FLASH page */

 FMC_ProgramPage(TEST_PAGE_ADDR);

[Notify]: User should enable FHSI clock and don’t disable it before performing flash operations.

As the code above, erase the corresponding area of flash, then clear page latch, then user could program the
flash. After that, should execute FMC_ProgramPage(TEST_PAGE_ADDR); to apply.

5.9. GPIO

There are 4 sample code about GPIO as below. User can find them in GPIO directory. The driver used is
located at mg32f10x_rcc.c and mg32f10x_gpio.c. Please note to add driver files.

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_BMX1 |RCC_APB1Periph_GPIOA
|RCC_APB1Periph_QSPI, ENABLE);

 GPIO_Init(GPIOA, GPIO_Pin_4 |GPIO_Pin_5 |GPIO_Pin_6 |GPIO_Pin_7, GPIO_MODE_AF
|GPIO_OTYPE_PP |GPIO_PUPD_NOPULL |GPIO_SPEED_HIGH |GPIO_AF5);

The initialization of GPIO is simple. Just call GPIO_Init() after enable port clock to enable GPIO. The first
parameter of the function is select port while the second parameter is setting pin, alternative function and mode.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-35

megawin

5.10. I2C

The MG32F10x has two I2C, which can control all I2C bus-specific sequences, protocols, arbitrations and
timing, and can support standard mode, fast mode and high-speed mode. I2C1 provides multi-master mode
function and supports SMBUS(System Management Bus) protocol.

There are 2 sample code about I2C as below. User can find them in I2C directory. The driver used is
located at mg32f10x_rcc.c, mg32f10x_i2c.c and mg32f10x_gpio.c. Please note to add driver files. If user need
to use 24C02, file drv_eeprom_24c02.c also should be added.

It can be seen that the sample code type is more, but also contains the I2C memory 24C02 sample code,
convenient for users to use. User can configure the STM32F10x based on the actual usage frequency, and then
replace the I2C initialization code of the STM32F10x.

 eeprom_24c02_init();

 result = eeprom_24c02_random_read(0x06, &rdata1);

 printf("Read from [0x06] is 0x%02X\r\n", rdata1);

 printf("eeprom_24c02_random_read() - TX_ABRT_SOURCE = %08X\r\n", result);// I2C read data

 if(result != 0) {

 errCode = 0x11;

 goto finish;

 }

 result = eeprom_24c02_byte_write(0x06, rdata1 + 1); //I2C write data

User can use driver functions to read and write data from 24C02 after initialization.

Interrupt function structure template:

// I2C2 Interrupt Routine

void I2C2_IRQHandler(void)

{

 uint32_t cmd;

 uint32_t tx_limit, rx_limit;

 if(I2C_GetITStatus(I2C2, I2C_IT_TX_ABRT) != RESET)

 {

 g_i2c_xfer_info.tx_abrt_source = I2C_GetTxAbortSource(I2C2);

 I2C2->INTR_MASK = I2C_INTR_STOP_DET; // Disable all interrupt except STOP_DET interrupt

 goto tx_aborted;

 }

 if(I2C_GetITStatus(I2C2, I2C_IT_RX_FULL) != RESET)

 {

 while((I2C_GetFlagStatus(I2C2, I2C_FLAG_RFNE) != RESET) && (g_i2c_xfer_info.rx_len))

 {

 *g_i2c_xfer_info.rx_buf = I2C_ReadData(I2C2);

 g_i2c_xfer_info.rx_buf++;

 g_i2c_xfer_info.rx_len--;

 }

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-36

megawin

 }

 if(I2C_GetITStatus(I2C2, I2C_IT_TX_EMPTY) != RESET)

 {

 tx_limit = 8 - I2C_GetTxFIFOLevel(I2C2);

 rx_limit = 8 - I2C_GetRxFIFOLevel(I2C2);

 while((tx_limit > 0) && (rx_limit > 0))

 {

 if((g_i2c_xfer_info.tx_len + g_i2c_xfer_info.rx_cmd_len) == 0) {

 I2C_ITConfig(I2C2, I2C_IT_TX_EMPTY, DISABLE); // Disable TX Empty Interrupt

 break;

 }

 cmd = 0;

 if((g_i2c_xfer_info.tx_len + g_i2c_xfer_info.rx_cmd_len) == 1) {

 cmd |= I2C_DATA_CMD_STOP;

 }

 if(g_i2c_xfer_info.tx_len != 0)

 {

 I2C_WriteDataCmd(I2C2, cmd | *g_i2c_xfer_info.tx_buf);

 g_i2c_xfer_info.tx_buf++;

 g_i2c_xfer_info.tx_len--;

 }

 else if(g_i2c_xfer_info.rx_cmd_len != 0)

 {

 I2C_WriteDataCmd(I2C2, cmd | I2C_DATA_CMD_READ);

 g_i2c_xfer_info.rx_cmd_len--;

 rx_limit--;

 }

 tx_limit--;

 }

 }

tx_aborted:

 if(I2C_GetITStatus(I2C2, I2C_IT_STOP_DET) != RESET) {

 I2C_ClearITPendingBit(I2C2, 0xFFFF); // Clear all interrupt flag

 I2C_ITConfig(I2C2, 0xFFFF, DISABLE); // Disable all interrupt

 g_i2c_xfer_info.flag_complete = 1;

 }

}

If user need to use DMA, the sample code provides a sample that uses DMA to send and receive data.
When porting, copy the DMA and I2C related functions to the project you want to port.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-37

megawin

5.11. I2S

The MG32F10x has a built-in I2S bus interface, supporting a variety of audio transmission protocols,
working in the master mode, supporting dual channel input and output. Provide master clock (MCLK) and serial
clock (SCLK) as well as frame clock (WS) and serial data (SD0/SD1).

I2S is generally used for playing audio, so it also provides the example of recording audio code, refer to the
example code in I2S path. User can refer actual situation to replace the underlying driver of the related
initialization of STM32F10x as a whole. The driver used is located at mg32f10x_gpio.c, mg32f10x_rcc.c,
mg32f10x_i2c.c and mg32f10x_i2s.c. Please note to add driver files. If user need to use es8316, files
drv_es8316.c and wav_data.c also should be added.

 BSP_I2S_Init();

StartPlay();

According to the two functions above, adjust the required functions and packet size, and you can
communicate with the I2S device and play audio.

Interrupt function structure template:

void I2S_IRQHandler(void)

{

 if (I2S_Channel_GetITStatus(1, I2S_IT_TXFE) != RESET)

 {

 I2S_Channel_WriteLeftData(1, (audio_data[audio_index + 1] << 8) | audio_data[audio_index]);

 I2S_Channel_WriteRightData(1, (audio_data[audio_index + 3] << 8) | audio_data[audio_index + 2]);

 audio_index += 4;

 if(audio_index >= audio_data_length)

 {

 audio_index = 0;

 }

 }

}

[Notify]: Strongly suggest not to use MG32F10x as USB audio, cause USB Buffer is 128Bytes which is
not enough for audio.

5.12. IWDG(independent watchdog)

Refer to the IWDG sample code to enable the watchdog, the watchdog configuration is relatively simple.
User can refer actual underflow frequency to replace the underlying driver of the related initialization of
STM32F10x as a whole. The driver used is located at mg32f10x_pwr.c, mg32f10x_anctl.c, mg32f10x_rcc.c,
mg32f10x_iwdg.c and mg32f10x_gpio.c. Please note to add driver files.

 /* Enable IWDG clock */

 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_IWDG, ENABLE);

 /* Enable write access to IWDG_PR and IWDG_RLR registers */

 IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);

 /* IWDG counter clock: LSI/32 */

 IWDG_SetPrescaler(IWDG_Prescaler_32);

 while(IWDG_GetFlagStatus(IWDG_FLAG_PVU) != RESET);

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-38

megawin

 /* IWDG timeout is about 250ms */

 IWDG_SetReload(LSI_FREQ / 32 * 0.250);

 while(IWDG_GetFlagStatus(IWDG_FLAG_RVU) != RESET);

 /* ATTENTION: It is best to reload IWDG counter when the RVU bit is 0. */

 while(IWDG_GetFlagStatus(IWDG_FLAG_RVU) != RESET);

 IWDG_ReloadCounter();

 /* Enable IWDG */

 IWDG_Enable();

 /* ATTENTION: It is best to reload IWDG counter when the RVU bit is 0. */

 if (IWDG_GetFlagStatus(IWDG_FLAG_RVU) == RESET) {

 IWDG_ReloadCounter();

 }

There are some limitations to the IWDG that need to be noted:

1．Once IWDG is enabled, it cannot be disabled even if a reset occurs.

Solution: Set the IWDG timeout setting to maximum before the code runs, and reload the IWDG counter
constantly.

2．If a reset occurs after the IWDG is started, it takes three LSI clock cycles for the IWDG domain to be

ready.

Solution: After the LSI is ready, delay about 1 millisecond before configuring the IWDG.

3．There is a chance that IWDG reload counter cannot be reloaded even execute reload IWDG counter

repeatedly.

Solution: Make sure the RVU bit is 0 before performing the reload IWDG counter operation. (RVU bit
indicates whether the reload counter operation is complete)

4. After the watchdog is enabled, the Debug function is out of control. If you still need the debug function,
you are advised to enable DBG_IWDG_STOP in the DBGMCU_CR register to stop the watchdog in debugging.

5. The independent watchdog cannot generate interrupt. To generate interrupt, use the window watchdog.

At present, the sample code has been provided in accordance with the above standards to do, users
transplant please pay attention to copy. In addition, the LSI clock has some deviation. Therefore, you need to
reserve more time for timing.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-39

megawin

5.13. LED

LED driver controller contains hardware 8-segment LED driver serial output circuit, and the module clock is
the internal system clock by default. LED driver peripherals also have a corresponding example code, imitate the
example of LED path under the sample code. The driver used is located at mg32f10x_rcc.c, mg32f10x_led.c
and mg32f10x_gpio.c. Please note to add driver files.

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_BMX2 | RCC_APB2Periph_LED, ENABLE);

 /* Reset LED module */

 LED_DeInit();

 /* LED configuration */

 LED->CYC = 200;

 LED->ECO = 180;

 LED->CON = (0x00 << 4);

 LED->CON |= 0x01;

 /* Infinite loop */

 while (1)

 {

 for(iter = 0; iter < 16; iter++)

 {

 LED_SetSegmentCode(0, table[iter]);

 }

After initializing the peripherals, call the driver function LED_SetSegmentCode() to output. The actual
display array needs to be adjusted according to the actual LED.

5.14. NVIC

NVIC mainly involves the control and shielding of interrupt priority, which will not be used in general
migration, but if necessary, you can refer to the following program of NVIC path under the sample code.

See readme.txt under each sample code for the functions implemented. It's explained in detail.

5.15. PWR(power control)

Setting power mode is a common setup, and the MG32F10x series offers SLEEP, STANDBY and STOP
low-power modes which has sample code. The driver used is located at mg32f10x_pwr.c, mg32f10x_anctl.c and
mg32f10x_rcc.c. Please note to add driver files.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-40

megawin

 /* Enter SLEEP Mode */

 PWR_EnterSLEEPMode(PWR_FCLK_Div2, PWR_EntryMode_WFI);

 /* Enter STANDBY Mode */

 PWR_EnterSTANDBYMode();

 /* Enter STOP Mode */

 PWR_EnterSTOPMode(PWR_STOPMode_LP4_S32KOFF, PWR_EntryMode_WFI);

Select a mode based on actual requirements. User can refer actual using mode to replace the underlying
driver of the related initialization of STM32F10x as a whole.

PVD is power detecter to detect VDD voltage, user can set the detect voltage to detect VDD voltage. Copy void
PVD_Config(void) into user project, and modify the voltage to use the PVD. The driver used is located at
mg32f10x_pwr.c, mg32f10x_anctl.c and mg32f10x_rcc.c. Please note to add driver files.

 /* Configure the PVD Level to 5 (refer to the electrical characteristics of

 you device datasheet for more details) */

 ANCTL_PVDLevelConfig(ANCTL_PVDLevel_5);

Refer to MG32F10x_RM.pdf, select voltage detect level.

Interrupt function structure template:

void PVD_IRQHandler(void)

{

 if(EXTI_GetITStatus(EXTI_Line16) != RESET)

 {

 /* Clear the EXTI line 16 pending bit */

 EXTI_ClearITPendingBit(EXTI_Line16);

 /* Change LED2 status */

 GPIO_ToggleBits(GPIOB, GPIO_Pin_13);

 }

}

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-41

megawin

5.16. RCC

There are four clock sources in MG32F10x can be used to drive the system clock: MHSI(8MHz)internal
OSC, FHSI(48MHz) internal OSC, PLL clock and HSE external OSC. In addition, There are two subclock
sources in device: LSI(32KHz)internal low-speed OSC LSI(32KHz) internal lowspeed OSC, used to drive IWDG
and LSE(32.768KHz) LSE(32.768KHz) external low-speed OSC clock to drive RTC.

There are two sample code is provided. The driver used is located at mg32f10x_pwr.c, mg32f10x_anctl.c,
mg32f10x_rcc.c and mg32f10x_gpio.c. Please note to add driver files.

The sample code under RCC_ClockConfig path is using XTAL to initial system clock while
RCC_ClockConfig2 is using internal OSC. User may not find the place of clock initial. The function is located at
the place as below instead of main.c. Of course, users can adjust the location of the clock initialization according
to custom, such as putting it back in main.c.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-42

megawin

static void SetSysClockTo72(void)

{

 __IO uint32_t StartUpCounter = 0, HSEStatus = 0;

 /* Unlocks write to ANCTL registers */

 PWR->ANAKEY1 = 0x03;

 PWR->ANAKEY2 = 0x0C;

 /* APB1CLK = MAINCLK */

 RCC->APB1PRE = RCC_APB1PRE_SRCEN;

 RCC->APB1PRE |= 0x00;

 /* Configure PD0 and PD1 to analog mode */

 RCC->APB1ENR = RCC_APB1ENR_BMX1EN | RCC_APB1ENR_GPIODEN;

 GPIOD->CFGMSK = 0xFFFC;

 GPIOD->MODER = 0x0F;

 /* Enable HSE */

 ANCTL->HSECR1 = ANCTL_HSECR1_PADOEN;

 ANCTL->HSECR0 = ANCTL_HSECR0_HSEON;

 /* Wait till HSE is ready and if Time out is reached exit */

 do

 {

 HSEStatus = ANCTL->HSESR & ANCTL_HSESR_HSERDY;

 StartUpCounter++;

 } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

 if (HSEStatus != 0)

 {

 /* Configure Flash prefetch, Cache and wait state */

 CACHE->CR = CACHE_CR_CHEEN | CACHE_CR_PREFEN_ON | CACHE_CR_LATENCY_2WS;

 /* AHBCLK = MAINCLK */

 RCC->AHBPRE = 0x00;

 /* APB2CLK = MAINCLK */

 RCC->APB2PRE = RCC_APB2PRE_SRCEN;

 RCC->APB2PRE |= 0x00;

#if (HSE_VALUE == 6000000)

 /* PLL configuration: PLLCLK = 6MHz * 12 = 72 MHz */

 RCC->PLLSRC = RCC_PLLSRC_HSE;

 RCC->PLLPRE = RCC_PLLPRE_SRCEN;

 RCC->PLLPRE |= 0x00;

 ANCTL->PLLCR = ANCTL_PLLCR_PLLMUL_12;

#elif (HSE_VALUE == 12000000)

 /* PLL configuration: PLLCLK = 12MHz / 2 * 12 = 72 MHz */

 RCC->PLLSRC = RCC_PLLSRC_HSE;

 RCC->PLLPRE = RCC_PLLPRE_SRCEN;

 RCC->PLLPRE |= RCC_PLLPRE_RATIO_2;

 RCC->PLLPRE |= RCC_PLLPRE_DIVEN;

 ANCTL->PLLCR = ANCTL_PLLCR_PLLMUL_12;

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-43

megawin

#endif

 /* Enable PLL */

 ANCTL->PLLENR = ANCTL_PLLENR_PLLON;

 /* Wait till PLL is ready */

 while(ANCTL->PLLSR != 0x03)

 {

 }

 /* Select PLL as system clock source */

 RCC->MAINCLKSRC = RCC_MAINCLKSRC_PLLCLK;

 RCC->MAINCLKUEN = RCC_MAINCLKUEN_ENA;

 }

 else

 { /* If HSE fails to start-up, the application will have wrong clock

 configuration. User can add here some code to deal with this error */

 while (1);

 }

 /* Locks write to ANCTL registers */

 PWR->ANAKEY1 = 0x00;

 PWR->ANAKEY2 = 0x00;

}

The code above is the code of clock initialization. User can copy and modify the code above refer to actual
frequency you need and replace the underlying driver of the related initialization of STM32F10x as a whole.
Please include #include "mg32f10x.h".

Among them, the most critical part is frequency multply, select PLL source.

RCC->PLLSRC = RCC_PLLSRC_HSE;

RCC->PLLPRE = RCC_PLLPRE_SRCEN;

RCC->PLLPRE |= RCC_PLLPRE_RATIO_2;

RCC->PLLPRE |= RCC_PLLPRE_DIVEN;

ANCTL->PLLCR = ANCTL_PLLCR_PLLMUL_12;

PLLSRC is select PLL source. If user don’t use XTAL, the SRC should not select HSE, can set to
RCC_PLLSRC_MHSI. The internal OSC is 8MHz. Then delete the code about HSE, and select correct
frequency multiple and division multiple. After that, user can output correct PLL clock.

/* Select PLL as system clock source */

RCC->MAINCLKSRC = RCC_MAINCLKSRC_PLLCLK;

RCC->MAINCLKUEN = RCC_MAINCLKUEN_ENA;

Finally, select PLLCLK when select MAINCLKSRC.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-44

megawin

5.17. RNG(Random Number Generator)

Random Number Generator (RNG) uses a 24bit LFSR to generate an 8bit random number.The RNG SFRs
can be accessed through APB2. The driver used is located at mg32f10x_rng.c and mg32f10x_rcc.c. Please note
to add driver files.

It’s very simple to use RNG, just to enable it.

 /* Reset RNG module */

 RNG_DeInit();

 /* Enable RNG generation */

 RNG_Cmd(ENABLE);

 printf("Generated random number is %d\r\n", RNG_RandByte());

As the code above, using RNG_RandByte() to catch a random number.

5.18. RTC

RTC migration is relatively simple, refer to the sample code under RTC path. The driver used is located at
mg32f10x_pwr.c, mg32f10x_rcc.c, mg32f10x_rtc.c and mg32f10x_bkp.c. Please note to add driver files.

void RTC_Configuration(void)

/* Reset Backup Domain */

 BKP_DeInit();

 /* Enable LSE */

 BKP_LSEConfig(BKP_LSE_ON);

 /* Wait till LSE is ready */

 while (BKP_GetLSEReadyFlagStatus() == RESET)

 {}

 /* Select LSE as RTC Clock Source */

 BKP_RTCCLKConfig(BKP_RTCCLKSource_LSE);

 /* Enable RTC Clock */

 BKP_RTCCLKCmd(ENABLE);

 /* Wait for RTC registers synchronization */

 RTC_WaitForSynchro();

 /* Wait until last write operation on RTC registers has finished */

 RTC_WaitForLastTask();

 /* Enable the RTC Second */

 RTC_ITConfig(RTC_IT_SEC, ENABLE);

 /* Wait until last write operation on RTC registers has finished */

 RTC_WaitForLastTask();

 /* Set RTC prescaler: set RTC period to 1sec */

 RTC_SetPrescaler(32767); /* RTC period = RTCCLK/RTC_PR = (32.768 KHz)/(32767+1) */

 /* Wait until last write operation on RTC registers has finished */

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-45

megawin

 RTC_WaitForLastTask();

 /* Sets the RTC counter */

 RTC_SetCounter(40271);

As above, modify prescaler and period to make RTC working functionally. User can copy the code above
and replace the underlying driver of the related initialization of STM32F10x as a whole.

void Time_Display(uint32_t TimeVar)

{

 uint32_t THH = 0, TMM = 0, TSS = 0;

 /* Reset RTC Counter when Time is 23:59:59 */

 if (RTC_GetCounter() >= 0x0001517F)

 {

 RTC_SetCounter(0x0);

 /* Wait until last write operation on RTC registers has finished */

 RTC_WaitForLastTask();

 }

 /* Compute hours */

 THH = TimeVar / 3600;

 /* Compute minutes */

 TMM = (TimeVar % 3600) / 60;

 /* Compute seconds */

 TSS = (TimeVar % 3600) % 60;

 printf("Time: %0.2d:%0.2d:%0.2d\r", THH, TMM, TSS);

}

The sample code also provides Hour, Minute and second unit to convert.

Interrupt function structure template:

void RTC_IRQHandler(void)

{

 if (RTC_GetITStatus(RTC_IT_SEC) != RESET)

 {

 /* Clear the RTC Second interrupt */

 RTC_ClearITPendingBit(RTC_IT_SEC);

 /* Enable time update */

 TimeDisplay = 1;

 }

}

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-46

megawin

5.19. SFM(Special Function Macro)

SFM is simply used to Count the number of “1” in a WORD (32bit), expand all the bits in a WORD (32bit) by
defined rate. Refer to the sample code under SFM path. The driver used is located at mg32f10x_sfm.c and
mg32f10x_rcc.c. Please note to add driver files.

 CRC_SFM_DeInit();

 printf("The number of bit 1 in 0xAAAAAAAA is %d\r\n", SFM_ComputeBit1Number(0xAAAAAAAA));

 printf("The number of bit 1 in 0x55555555 is %d\r\n", SFM_ComputeBit1Number(0x55555555));

 printf("The number of bit 1 in 0xFFFFFFFF is %d\r\n", SFM_ComputeBit1Number(0xFFFFFFFF));

 printf("The number of bit 1 in 0x7FFFFFFF is %d\r\n", SFM_ComputeBit1Number(0x7FFFFFFF));

 printf("The number of bit 1 in 0x00000000 is %d\r\n", SFM_ComputeBit1Number(0x00000000));

 printf("The number of bit 1 in 0x1BC4D029 is %d\r\n", SFM_ComputeBit1Number(0x1BC4D029));

 printf("The number of bit 1 in 0xFFFF0000 is %d\r\n", SFM_ComputeBit1Number(0xFFFF0000));

 printf("The number of bit 1 in 0x0000F0FF is %d\r\n", SFM_ComputeBit1Number(0x0000F0FF));

 printf("The number of bit 1 in 0x5503AAFF is %d\r\n", SFM_ComputeBit1Number(0x5503AAFF));

User can directly call the driver function to compute after simply initial SFM module.

5.20. SPI

Sample code about SPI is more, user can use them refer to their needs. All code is under SPI path. The
driver used is located at mg32f10x_gpio.c, mg32f10x_rcc.c and mg32f10x_spi.c. Please note to add driver files.

 /* SPI configuration */

 SPI_DeInit(SPIM2);

 SPI_InitStructure.SPI_TransferMode = SPI_TransferMode_TxAndRx;

 SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;

 SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;

 SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;

 SPI_InitStructure.SPI_BaudRatePrescaler = 8;

 SPI_InitStructure.SPI_FrameFormat = SPI_FrameFormat_SPI;

 SPI_Init(SPIM2, &SPI_InitStructure);

 SPI_ITConfig(SPIM2, 0xFF, DISABLE);

 SPI_NSSConfig(SPIM2, SPI_NSS_0, ENABLE);

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-47

megawin

As above to initial SPI, user can modify SPI clock according to prescaler and SPI data format to replace the
underlying driver of the related initialization of STM32F10x as a whole.

while (SPI_GetFlagStatus(QSPI, SPI_FLAG_TFE) == RESET);

SPI_WriteData(QSPI, x); //write value x through SPI

while (SPI_GetFlagStatus(QSPI, SPI_FLAG_RFNE) == RESET);

x = SPI_ReadData(QSPI); //read SPI data to x

Interrupt function structure template:

void QSPI_IRQHandler(void)

{

 if(SPI_GetITStatus(QSPI, SPI_IT_RXF) != RESET)

 {

 while(SPI_GetFlagStatus(QSPI, SPI_FLAG_RFNE) != RESET)

 {

 master_rx_buf[rx_index] = SPI_ReadData(QSPI);

 rx_index++;

 if(rx_index >= 20) {

 SPI_ITConfig(QSPI, SPI_IT_RXF, DISABLE);

 break;

 }

 }

 }

 if(SPI_GetITStatus(QSPI, SPI_IT_TXE) != RESET)

 {

 while(SPI_GetFlagStatus(QSPI, SPI_FLAG_TFNF) != RESET)

 {

 SPI_WriteData(QSPI, master_tx_data[tx_index]);

 tx_index++;

 if(tx_index >= 20) {

 SPI_ITConfig(QSPI, SPI_IT_TXE, DISABLE);

 break;

 }

 }

 }

}

5.21. SYSTICK

Systick always be used to do millisecond delay. Refer to the sample code under SysTick path to configure
SYSTICK. The driver used is located at mg32f10x_rcc.c. Please note to add driver files.

 SystemCoreClockUpdate();

 if (SysTick_Config(SystemCoreClock / 1000))

 {

 /* Capture error */

 while (1);

 }

Through code above to finish systick initialization. Parameter systemCoreClock should be modify to actual
system clock. User can replace the underlying driver of the related initialization of STM32F10x as a whole.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-48

megawin

void Delay(__IO uint32_t nTime)

{

 TimingDelay = nTime;

 while(TimingDelay != 0);

}

/**

 * @brief This function handles SysTick Handler.

 * @param None

 * @return None

 */

void SysTick_Handler(void)

{

 if (TimingDelay != 0x00)

 {

 TimingDelay--;

 }

}

Finally, add the interrupt function to call the Delay function. This Delay should also be replaced from
STM32F10x Delay.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-49

megawin

5.22. TIM

Timer is very commonly used peripherals, functions are very much, in order to facilitate the user transplant,
we also provide a large number of timer sample code. Users can according to the sample code under TIM path
of each different code in the readme.TXT, understand the implementation of each program function, and
according to the actual use frequency and mode of configuration, and then replace the related TIM initialization
function code of STM32F10x. The driver used is located at mg32f10x_tim.c and mg32f10x_rcc.c. Please note to
add driver files.

[Notify]: If user need PWM with Dead time, please use TIM1.

TIM1ComplementarySignals code is the PWMComplementary output. User can refer to this sample in
applications like BLDC and so on.

 /* Time Base configuration */

 TIM_TimeBaseStructure.TIM_Prescaler = 0;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseStructure.TIM_Period = TimerPeriod;

 TIM_TimeBaseStructure.TIM_ClockDivision = 0;

 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;

 TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

 /* Channel 1, 2 and 3 Configuration in PWM mode */

 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;

 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;

 TIM_OCInitStructure.TIM_Pulse = Channel1Pulse;

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-50

megawin

 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;

 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;

 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;

 TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;

 TIM_OC1Init(TIM1, &TIM_OCInitStructure);

 TIM_OCInitStructure.TIM_Pulse = Channel2Pulse;

 TIM_OC2Init(TIM1, &TIM_OCInitStructure);

 TIM_OCInitStructure.TIM_Pulse = Channel3Pulse;

 TIM_OC3Init(TIM1, &TIM_OCInitStructure);

 /* Automatic Output enable, Break, dead time and lock configuration*/

 TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;

 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;

 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;

 TIM_BDTRInitStructure.TIM_DeadTime = 11;

 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;

 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;

 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;

 TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);

 /* TIM1 counter enable */

 TIM_Cmd(TIM1, ENABLE);

 /* Main Output Enable */

 TIM_CtrlPWMOutputs(TIM1, ENABLE);

If user need a simply timing function, TIM_Base sample should be a good sample to refer. The driver used is
located at mg32f10x_tim.c and mg32f10x_rcc.c. Please note to add driver files. The most difference from PWM
sample is the TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing; PWM is PWMMode.

 /* ---

 TIM2 Configuration: Output Compare Timing Mode:

 TIM2 counter clock at 12 MHz

 CC1 update rate = TIM2 counter clock / CCR1_Val = 286.72 Hz

 CC2 update rate = TIM2 counter clock / CCR2_Val = 523.97 Hz

 CC3 update rate = TIM2 counter clock / CCR3_Val = 811.08 Hz

 CC4 update rate = TIM2 counter clock / CCR4_Val = 1389.85 Hz

 --- */

 /* Compute the prescaler value */

 PrescalerValue = (uint16_t) (SystemCoreClock / 12000000) - 1;

 /* Time base configuration */

 TIM_TimeBaseStructure.TIM_Period = 0xFFFFF;

 TIM_TimeBaseStructure.TIM_Prescaler = 0;

 TIM_TimeBaseStructure.TIM_ClockDivision = 0;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-51

megawin

 /* Prescaler configuration */

 TIM_PrescalerConfig(TIM2, PrescalerValue, TIM_PSCReloadMode_Immediate);

 /* Output Compare Timing Mode configuration: Channel1 */

 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing;

 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

 TIM_OCInitStructure.TIM_Pulse = CCR1_Val;

 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

 TIM_OC1Init(TIM2, &TIM_OCInitStructure);

 TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);

 /* Output Compare Timing Mode configuration: Channel2 */

 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

 TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

 TIM_OC2Init(TIM2, &TIM_OCInitStructure);

 TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

 /* Output Compare Timing Mode configuration: Channel3 */

 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

 TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

 TIM_OC3Init(TIM2, &TIM_OCInitStructure);

 TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

 /* Output Compare Timing Mode configuration: Channel4 */

 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

 TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

 TIM_OC4Init(TIM2, &TIM_OCInitStructure);

 TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

 /* TIM IT enable */

 TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

 /* TIM2 enable counter */

 TIM_Cmd(TIM2, ENABLE);

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-52

megawin

5.23. UART

Serial port is also commonly used. We also provide a large number of timer sample code about it. Users
can according to the sample code under UART path of each different code in the readme.TXT, understand the
implementation of each program function. Mostly UART_Printf sample is enough. The driver used is located at
mg32f10x_uart.c, mg32f10x_rcc.c and mg32f10x_gpio.c. Please note to add driver files.

 /* UART1 configuration */

 UART_DeInit(UART1);

 UART_InitStructure.UART_BaudRate = 115200;

 UART_InitStructure.UART_WordLength = UART_WordLength_8b;

 UART_InitStructure.UART_StopBits = UART_StopBits_One;

 UART_InitStructure.UART_Parity = UART_Parity_None;

 UART_InitStructure.UART_AutoFlowControl = UART_AutoFlowControl_None;

 UART_Init(UART1, &UART_InitStructure);

 UART_FIFOCmd(UART1, ENABLE);

Through code above, modify baud rate and data format you need to initial UART.Using pin can be changed 实
in GPIO initialization.

After initialization is finished, then user should be able to output data through UART by using printf function.
Be attention, user should include # include <stdio.h> before using printf.

 scanf("%d", &value); //read uart data

 printf("You enter is %d\r\n", value); //write uart data

或者

while(!(UART_GetLineStatus(UART1) & UART_LINE_STATUS_DR));

value = UART_ReadData(UART1); // read uart data

UART_WriteData(UART1, value); // write uart data

while(!(UART_GetLineStatus(UART1) & UART_LINE_STATUS_THRE));

Interrupt function structure template:

void UART1_IRQHandler(void)

{

 uint8_t rbyte;

 uint8_t int_id;

 int_id = UART_GetIntID(UART1);

 if(int_id == UART_INTID_RDA)

 {

 rbyte = UART_ReadData(UART1);

 rxBuffer[rxIndex++] = rbyte;

 if (rxIndex >= 100) {

 flag = 1;

 rxIndex = 0;

 }

 }

 else if (int_id == UART_INTID_THRE)

 {

 if (txIndex < sizeof(txBuffer)) {

 UART_WriteData(UART1, txBuffer[txIndex]);

 txIndex++;

 }

 else {

 UART_ITConfig(UART1, UART_IT_THRE, DISABLE);

 }

 }

}

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-53

megawin

5.24. USB

We provide 4 different sample code about USB. User can do porting according to different applications. The
specific implementation can also be seen in the readme.txt of various programs under the USB path of the
sample code. The driver used is located at mg32f10x_anctl.c, mg32f10x_rcc.c, mg32f10x_pwr.c,
mg32f10x_gpio.c and usbd_user.c. Please note to add driver files.

[Notify]: If user use MHSI internal OSC to be USB clock source, additional code need to added into project.
The code has already stored in /Documents/USB_Do_Not_Use_Crystal_Code/

The following is the configuration process of the MHSI to be USB source. This method need to use Systick
or TIM4. Select a peripheral file you need to perform the following configuration.

一、Keil configuration

[Notify]: This configuration is only valid while using USB Function.

The following figure shows the KEIL project configuration.

二、Peripheral requirement

This method need to use Systick or TIM4.

三、Using course

1. Insert MHSI Trim code.

Insert jmntTrim.c and jmntTrim.h file into project.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-54

megawin

2. Configure USB

a. Enable USB SOF interrupt.

b. Include JmntTrim.h head file in usbd_user.c

c. Call CheckTune function in USBD_User_SOF function.

d. The interrupt priority of USB should be configured to highest pripority.

e. Other configurations can be configured based on user definition.

3. Call jmntTrimInit function in main function.

Please note that jmntTrim.h head file must be included.

4. Configure Trim parameter refer to different system clock.

The default main frequency is 48 MHz. If the user's main frequency is 48 MHz, do not change the parameter.

If the user's main frequency is not 48 MHz, user can modify the value.

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-55

megawin

5.25. WWDG(window watchdog)

The window watchdog timer (WWDG) is used to detect system failures due to software malfunctions. After
the window watchdog timerstarts, the value of downcounter reduces progressively. The watchdog timer causes
a reset when the counter reached 0x3F (the CNT[6] bit becomes cleared). The watchdog timer also causes a
reset if the counter is refreshed before the counter reached the window register value. So the software should
refresh the counter in a limited window.

We also provide sample code about WWDG for user to port. User can configure the underflow period refer to
they need and replace the related initialization function code of STM32F10x. The driver used is located at
mg32f10x_wwdg.c and mg32f10x_rcc.c. Please note to add driver files.

 /* WWDG clock counter = (PCLK(96MHz)/4096)/8 = 2929.6875 Hz (~0.341 ms) */

 WWDG_SetPrescaler(WWDG_Prescaler_8);

 /*

 Enable WWDG and set counter value to 127, WWDG timeout = ~0.341 ms * 64 = 21.8 ms

 In this case the refresh window is: ~0.341 ms * (127-80) = 16.027 ms < refresh window < ~0.341 ms *
64 = 21.8ms

 */

 WWDG_SetWindowValue(80);

 WWDG_Enable(127);

 WWDG_SetCounter(127);

The window watchdog is setting to allow to reload watchdog between counter value is window value to 64.
Any other window to reload the counter or the counter value is less than 64, will cause a reset.

It’s easy to reload the counter. Just execute WWDG_SetCounter(x); function in right time.

Interrupt function structure template:

void WWDG_IRQHandler(void)

{

 WWDG_ClearFlag();

}

 MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-56

megawin

6. Reversion

Version 1.01 (2022_0411) Chapter

1 Change "LCD Driver" in hardware resource difference table to "LED Driver" 2.2

2 ADC software port added access data function and interrupt function template 5.2

3 CMP software port added read compare value function and notify 5.3.1

4 DCSS software port added interrupt function template 5.3.2

5 DMAC software port added interrupt function template 5.6

6 EXTI software port added interrupt function template 5.7

7 I2C software port added interrupt function template 5.10

8 I2S software port added interrupt function template 5.11

9 IWDG software port added notify 5.12

10 PVD software port added interrupt function template 5.15

11 RTC software port added access data function and interrupt function template 5.18

12 SPI software port added access data function and interrupt function template 5.20

13 UART software port added access data function and interrupt function template 5.23

14 WWDG software port added interrupt function template 5.25

Version 1.0 (2022_0214) Chapter

1 Initial version

	Index
	1. Introduction
	1.1. Document Using

	2. Hardware difference comparison
	2.1. Pin differences comparison
	2.2. Resource comparison

	3. Development environment setup
	3.1. Development IDE for MG32F10x
	3.2. Installation of the development package
	3.3. Build a project
	3.4. Peripheral library configuration
	3.5. Debugger configuration
	3.5.1. Use ST-Link to debug
	3.5.2. Use J-Link to debug

	4. Layout suggestion
	4.1. Printed circuit board
	4.2. Component location
	4.3. Grounding and power supply(VSS/VDD)
	4.4. Decoupling
	4.5. Power supply scheme
	4.6. Other signals
	4.7. Unused IO and its properties
	4.8. Clock
	4.9. Analog signal
	4.10. EMI

	5. Peripheral porting
	5.1. Preparation before porting
	5.2. ADC
	5.3. ANCTL(Analog controller)
	5.3.1. CMP
	5.3.2. DCSS

	5.4. BKP
	5.5. CRC
	5.6. DMAC
	5.7. EXTI
	5.8. FMC(Flash memory controller)
	5.9. GPIO
	5.10. I2C
	5.11. I2S
	5.12. IWDG(independent watchdog)
	5.13. LED
	5.14. NVIC
	5.15. PWR(power control)
	5.16. RCC
	5.17. RNG(Random Number Generator)
	5.18. RTC
	5.19. SFM(Special Function Macro)
	5.20. SPI
	5.21. SYSTICK
	5.22. TIM
	5.23. UART
	5.24. USB
	5.25. WWDG(window watchdog)

	6. Reversion

