megawin

MG32F10x
Porting To STM32F10x

Manual

Version 1.01
Date 2022/4/11

megawin MG32F10x porting to STM32F10x manual V1.01

MG32F10x porting to STM32F10x manual Page-2

megawin MG32F10x porting to STM32F10x manual V1.01

Index
I [oY o o Yo [V Yo oY o [PR PPPPPPRR 5
O O B To Yo [1 1= o1 U] oo TP PR USRS 5
2. Hardware differenCe COMPATISOMN ...ccciiiiii ittt e e e et e e e as bt e e e aa b et e e e asbe e e e e anbr e e e e anbne e e e annneeesannes 6
P2 I o 1o o 11 = (=T ot SR oo g o = T4 £] o [T ERPT R 6
2.2, RESOUICE COMPAIISON .oeeiiiiiiititeeeeeesieitttreeteeeasaatataeseeaesassttaeeeaaeaesatsssseaaeeasaassssaesseaesaasassseseaeesssaassaaseeaeeesanssstseeeeaessannereees 6
3. Development ENVIFONMENT SEIUPuiiiiiiie i ie e e e e st e e e e e e s e st e e e eeeesaasnbeeeeeaeessaassntaeeeaaeessannssaeeeeeesesannnnreeeees 7
3.1, DeVvelopmeNnt IDE fOF MGSB2FLOXcccuuriiiieeeiiiiieet e e e e e e ettt e e e e e e s ettt e e e e e s e sataaeeeeeesaasattaeseaeeeasastbaseeaeeesaassbtseeaeeessannsnaeeas 7
3.2. Installation of the developMENTt PACKAGEcoi ittt e ettt e e e e e et et e e e e e e e e anabeeeeaaeeesaannbtneeaeaeeeannneneeeas 7
TR T = W o = W o] (o) [=Tox PP SPPRTRPTP 8
3.4. Peripheral IDrary CONTIGUIALION.o ittt e e e e e ettt e e e e e e et b et e e e e e e e e ntbeeeeeaeesaansntbeeeaaeeaannneeeeeas 14
I ST B T=1 o 18T fo [T ool a1 il U] = L1 (o] o RSP PR 16
3.5.1. USE ST-LINK 10 EIUQ ...ttt et e et bt e et e e e s e a et e e as bt e e s bne e e s snne e e e annreeenaes 16
IR T0 A U LTI 101 {0 o (= o o PSPPSR 19
O I N £ U L =Y o o 1= e] o PP 23
O I o 101 Yo [o (o] U1 o o= 1o [P T U O P T PSP P PRV PP UPPTRUPPPIN 23
B ©Co 4o o o] o 1=T o1 (o ox= 1 1o o KU PO T TP PP U PP PPPPPPPPRPIN 23
4.3. Grounding and POWET SUPPIY(VSS/VDD)cciuuiieiiiiee e ettt ettt e st ee e ettt e e st e e sttt e e e atteeesamseeeesbeeeeaanteeeeanseeesanseeeeaneeeeennns 23
R B =T ote 10 o] |1 o o [T O PP PP PP PPPPPPPPRPN 23
4.5, POWET SUPPIY SCREME ..ttt ettt e et e e ettt e e e a bt e e ottt e e e sttt e e emteeeeanabeeeeasteeeeansseeesasneeeeaneneeennns 24
G T @1 [=T] To o = PO PO PU PP PPPPPPPPRPN 24
o RV 1 10T =T B (@ 0= T o [3 o] o] o1=] ¢ [ST PP T PRSP OTUPPPPPPTN 24
S T O [o o) TP PP P PP PP PPPPPPPPRPIN 25
e T Y o F= 1o To JE]To] o F= TP P TP OTPPPPPPPRN 25
O T Y | OSSPSR 25
T S AT oL Y=t = I o Yo 1 o o S PR UTPPPP 27
5.1. Preparation DEOIE POITING. eii ittt e e ah e e e et e e e s be et e e e s bt e e e b e e e e bt e e e b e e e e 27
5.2, ADIC . ..ottt E AR b e ARt e E e e oAb e E et R e e R e e e R e e E et e Rt e R et e Rt b et R et e e b et e nnr e e nnn e e s 28
5.3, ANCTL(ANAIOG CONLIOIET) ...ieteeeiiieee ettt e ettt e bt e e eh bt e e ek e e e e sb e e e e ah b et e ek bt e e e bt e e e e anbr e e e esne e e e nnne s 30
ST T I O 1V | T T TP OO PR PP PPPPPUPRPPRTIN 30
LS TRC JZ R B 105 1 PP TOPRT ORI 30
S T = T T T O S TP SO T PP PU PP PPPTOTPPPIN 31
LG T 4 N 31
BB, DIMAC ...ttt et a e E bR £ AR e b oAb e e R et ke R e e oAb et e R et e R et e R et e R et ek et e b et be e et bt e nane e s 31
LT R =5 I LSOO PPPPPPTPPP 33
5.8. FMC(FIash MeEmMOry CONTIOIEE)......coo ettt e e oo e sttt e e e e e s b bttt e e e e e e s e abbbe e e e e e e e e nbabbeeeeeeeeannneeneeas 34
LS IEe TR €] = [SRR PRTRTSPI 34
S0 O R 17 O T S O T O S PO PO PT PP PP PPPTOTPTIN 35
L 00 O 1 N 37
SO 2 ViV m T e (1o (=T ol o o (=TT AVITz= 1 od T (o]) ST URTTR O 37
Lo 00 T I I N 39
S0 N Y [T T O T O PO SO T PO TP UPPTOTPTIN 39
5.15. PWR(POWET CONIOI) ...eiiitiieiiiiiiee ittt ettt s ettt e e a bt e e ettt o4kt e e e e eH ke e e aa b et e o4 s b et e e ah b et e e aa bbbt e e st et e e anbb e e e asbeeeennnees 39
S0 O T O ST SO PP O TP OU PR UPPTOTPPTI 41
5.17. RNG(RANAOM NUMBDEI GENEIALOI)......uutiiiiieeeiiiiitiee e e e e eeetttt et e e e e s e sttt et eaeesaasttaeeeaaeaassattbaeeaaeeesasssaseeaeeesaassasseeeeaessassssraees 44
ST S T 1 O O O O P T PO PPT O TR UPPTOTRPTI 44
5.19. SFM(SPECIal FUNCHON IMACIO)iiiiiiiiiiiiiieee e e e ittt ee e e e e e ettt et e e e e s e s ataaeeeeeesaassbaaeeaaeaaa st bbaeeaaeeesaassbeseeeeeesaasssnbeeeaeessasnnraees 46
S] = T O O O PO OPP T RUP P OU R UPPTOTRPTIN 46

MG32F10x porting to STM32F10x manual Page-3

megawin MG32F10x porting to STM32F10x manual V1.01

Lo 00 S T I [47
Lo 0722 11 1Y 49
L2 T 7 2 O 52
L0 U 1 53
5.25. WWDG(WINAOW WALCNTOD)vvveiieeiiiiiiiiiiee e e e e ettt e e e e e ettt e e e e e ettt e e e e e e e satba e e e eaeaessasbbaeeeaeeesansbbaseeaeeesanssasseeeeeeseanansraees 55
R = L=V = o] o SRR 56

MG32F10x porting to STM32F10x manual Page-4

megawin MG32F10x porting to STM32F10x manual V1.01

1. Introduction

1.1. Document Using

MG32F10x series is the single-chip 32-bit microcontroller based on a high performance Core ARM 32-bit
Cortex™-M3 CPU with embedded Nested Vectored Interrupt Controller (NVIC) launched in 2021 by megawin.
MG32F10x series has the advantages of high performance and strong compatibility of software and hardware.
This document is intended to help users of STM32F10x series chips port to MG32F10x series.

In general, the hardware porting is relatively simple, can be directly replaced from STM32F10x series chips
to MG32F10x series, no need to modify the circuit. However, there are still some differences in the software, so it
needs to be modified in the software. This document will also introduce the details of the software modification.
Please understand if there are any mistakes or omissions.

MG32F10x porting to STM32F10x manual Page-5

megawin

MG32F10x porting to STM32F10x manual V1.01

2. Hardware difference comparison

2.1. Pin differences comparison
The following table shows the pin differences between MG32F10x series and STM32F10x series.

Chip
Package MG32F10x | STM32F10x
LQFP48 Fully compatible with pin position and function
LQFP64 Fully compatible with pin position and function

2.2. Resource comparison

The following table shows the differences of hardware resources between MG32F10x series and

STM32F10x series.
MG32F103 MG32F104 STM32F103
Core Cortex-M3 Cortex-M3 Cortex-M3
Flash 96K~128K 256K 16K~1M
RAM 28K 36K 6K~96K
Frequency 72MHz 96MHz 72MHz
Access Flash wait state Cache,no wait cycle Cache,no wait cycle 2 cycle
Flash write/erase cycle 100k cycle 100k cycle 10k cycle
TIMER 4 4 4/5/8
U(S)ART 3 3 2/3/5
12C 2 2 1/2
SPI 2 2 1/2/3
12S 0~1 0~1 2
CAN -- -- 1
USB Device Device Device
SDIO -- -- 1
ADC 1(10~16) 1(10~16) 2(10)/2(16)/3(21)
CMP 2 2 -
LED Driver 8 Segment 8 Segment --
Active Power 100uA/MHz @3.3V 100uA/MHz @3.3V 292uA/MHz @3.3V
Sleep 5mA 5mA 5.5mA
Stop 30uA 30uA 24uA
Standby 4.5uA 4.5uA 2uA
Vbat 1.2uA 1.2uA 1.4uA
Flash write/erase cycle: When MCU is running, operations involving Flash access, such
<Note> as reading instructions and variables, need the wait cycle. The

longer wait cycle, the lower the actual operation efficiency.

MG32F10x porting to STM32F10x manual

Page-6

megawin MG32F10x porting to STM32F10x manual V1.01

3. Development environment setup

3.1. Development IDE for MG32F10x

The development of MG32F10x series needs to use the Keil 5 MDK for ARM version. The Keil 5.26 and
above version must be installed. If the version is too low, it will be impossible to identify the development
package installation program.

3.2. Installation of the development package
Open Megawin.CM3.DFP.1.0.0.pack.

B Megawin.CM3_DFP.1.0.0.pack

Click Next, and wait for finish.
Pack Unzip: Megawin CM3_DFP 1.0.0 X

‘Welcome to Keil Pack Unzip
Release 11/2021

Thiz program installs the Software Pack:

Megawin CM3 DFP 1.0.0
tegawin ARM Corter-td 3 MG 32402z Device Support

Destination Falder

|H el vEhARMYPACK MegawinC 3_DFPY1.0.0

. Pack already installed. [T Cancel
l % Click "Mext" to replace. : Z |

=0

[Notify]: If the installation package shown in the figure above cannot be opened, the Keil version is too early
to run. Use a newer version of Keil.

MG32F10x series MCU of megawin can be selected for development after successful installation.

Device |Target | Output | Listing | User | CiC++ | Asm | Linker | Debug | Ulties |
|Scrf't','\'are Packs J
Vendor: Megawin Software Pack
Device: MG32F103RCTE Pack: |Megawin.CM3_DFP.1.0.0
Toolsst: ARM URL: hitp:#fwurw megawin com. trfuplosd fmediabdt
Search: |
= MG32 M3 Series d CPU Operation frequency up to $6MHz -
Built4n one 24-bit system tick timer
=7 MG32ZF103C9x Flash / SRAM
& MmGa2r03CoTE The MG32F1(x device famil i ARMC M3
5 %2 MGI2FL03CEK e evice family cortains an ortex-M3 processor. _
£ MG32F103CBTE Features: 1
- CPU Core (36MHz/S\WD)
=715 MG32F103RBx - Flash Memory (256KB)
& MG32FL03RETE - SRAM Memory (36KB)
- DMA (M2M/M2P./P2M/P2F)
=" MG32FL03RCx - GPIO (LQFP6&4 / 10=51)
=N MG32FL03RCT6 [LaE
(] | | v | +| |- ADC (12bit SAR ADC with 400Ksps) -
0K Bl | Defaults | Help

MG32F10x porting to STM32F10x manual Page-7

megawin MG32F10x porting to STM32F10x manual V1.01

3.3. Build a project

1) New a folder named “Template” to contain project.

2) New Libraries, Project and User subfolder in Template folder. (User can also customize their own folder
structure)

mnilat
vic

3) Copy MG32F10x standard peripheral library’s Libraries folder’s content to Template\Libraries.

4) Copy MG32F10x standard peripheral library’s ProjecttMG32F10x_StdPeriph_Template folder’s content to
Template\User.

~ TEMPLATE
~ Libraries
» CMSIS
32F10x_StdPeriph_Driver

AG32F10x_USBEDevice_Driver

main.c
mg32f10x_conf.h

mg32f10x

mg32f10x_ith

5) Open Keil MDK, New uVision project.

kA pVision
File Edit View Projec¢ Flash Debug Peripherals Tools
B 4 & New pVision Project... f
New Multi-Project Workspace...

Open Project...

Project
Close Project
Export »
Manage »

MG32F10x porting to STM32F10x manual Page-8

megawin MG32F10x porting to STM32F10x manual V1.01

6) New a project named Template at Template\Project path.

I Create Mew Project

& w4 s TERC » Deskiog) v ® Search Project

Organize v Newfolder

@, OneDrive * Name Date modified Type

[This PC
B 30 Objects

B Deskiop

[£] Documents
& Downloads
D Music

&= Pictures

B videos

i Local Disk (C:)

No items match your search.

= Local Disk (D)
. workfiles (E)

File namg [Template |

Save as type: | Project Files (*.uvproj; *.uvprojx)

A Hide Folders

Save Cancel

7) Select device which you need in this project, then click OK.

Device | Target | Output | Listing | User | CiC++ | Asm | Linker | Debug | Ulities |

|Soﬂ','\'are Packs J
Vendor: Megawin Software Pack
Device: MG32F103RCTS Pack: |Megawin.CM3_DFP.1.0.0
Toolset: ARM URL: hitp:#fwurw megawin com. twfuplosd med iah{l
Search: |
=% MG32 M3 Series d CPU Operation frequency up to 96MHz -
% MGI2FL03C0x Elualét;nfosn;fn:rbrt system tick timer
& Mez2r03coTS The MG32F10x device famil i ARM Cortex-M3
o % MG32FL03CBx e evice family contains an rtex-M3 processor. _
£ MG32F103CBTE Features: 1
- CPU Core (36MHz/SWD)
173 MG32FL03RBx - Flash Memory (256KB)
- SRAM Memory (36KB)
& MGI2FLO3RETS - DMA (M2M/M2P/P2M/P2P) b
=% MG32FL03RCx - GPIO (LQFP6&4 /10=51)
N MG32F103RCT6 [T
| | »|+| |- ADC (12bit SAR ADC with 400Ksps)

OK Bl | Defaults | Help |

show Manage Run-Time Environment window. Click Cancel.

o=t

8) Then it will

& Manage Run i

Vehsstion Ourpat

= -

MG32F10x porting to STM32F10x manual Page-9

megawin MG32F10x porting to STM32F10x manual V1.01

9) New 3 groups: CMSIS, User and StdDriver.

K DATemplate\ProjectiTemplate.uvproj - pVision - o x
Mie 4t View Projed Pah Oebug Perphesls Tosh SVCS Windew Hele
15 P A L) “ PRNMAANRIEE G S e ¥k 1K o |
S e W Tages 2
I Project Template
¥ ad Terget1
e [@ U 0,n
Duild Output
{Manage Project tem UUNGME Corte
Manage Project ltems X
Project Iteaz IFoldus/lxtmionll Books |
Project Tagets: 171X |4 | Growpe: T1X |4 $ [Fex X+ ¢
User
St Driver
Set as Cument Targat Add Files .. '
0K I Cancel I Help I

10) Add peripheral library file into Group
Add in CMSIS Group:

Template\Libraries\CMSIS\Device\MG\MG32F10x\startup\arm\startup _mg32f10x.s
Template\Libraries\CMSIS\Device\MG\MG32F10x\system mg32f10x.c

Add in User Group:
Template\User\main.c

Template\User\mg32f10x_it.c
Add in StdDriver Group Group:

Template\Libraries\MG32F10x_StdPeriph_Driver\src folder’s every .c file.

MG32F10x porting to STM32F10x manual Page-10

megawin MG32F10x porting to STM32F10x manual V1.01

Manage Project ltems X

Project Items IFolders,-‘"Extensions I Eooks I

|Project Targets: |Fi|e5: r kAR 2
CMSIS startup_mg3Z 10xs
system_mg3H 10x.c
StdDriver
Set as Cument Target | Add Files... |

Manage Project ltems x

Project Items IFolders,-‘"Extensions I Eooks I

|iject Targets ‘Gmups: i |+ +
CMISIS main.c
mg3H10e_it.c
StdDriver
Set as Cument Target | Add Files... |

0K I Cancel Help

MG32F10x porting to STM32F10x manual Page-11

megawin MG32F10x porting to STM32F10x manual V1.01

Manage Project ltems X

Project Items IFolders,-‘"Extensions I Eooks I

|Fies: x|+ +

mg3X1lk_adcc ~
mg3H10x_anctl.c

mg3H10x_bkp.c

mg3X1x_crcc

mg3H10x_dmac.c
mg3210x_extic
mg3H10x_fmcc
mg3X10x_gpio.c
mg3H10_iZc.c
mg3X1_iZsc
mg3H10x_iwdg.c
mg3H10x_led.c
mg3H10x_pwrc
mg3H 10 _rcc.c
mg3X1l_mag.c
mg3H 10 _rtc.c
mg3X 10 _sfmc
mg3H10x_spic
ma3H 10 tim.c v

Set as Curent Target | Add Files... |

0K I Cancel Help |

11)Final project structure as below:

qu Project: Template

= &5 Target 1

=5 cMmsis

..... startup_mg32f10x.s
..... system_mg32f10x.c
: &5 User
----- main.c
..... mg32f10x_it.c
- StdDriver
rmg32f1le_adc.c
mg32f1lx_anctl.c
mg32f 10 _bkp.c
mg32f10_cre.c

12) Open Options for Target window.

C:\Users\3513\Desktop\Template\Project\Template.uvprojx - pVision -] X
File Edit View Projet Flash Debug Peripherals Tools SVES Window Help

NELdS $ B2 0c|«=|prnps AR ER* aQ-leoc®

E e] 8 Tergett = R Bl]
Project 28
= %% Project: Template -
) 45 Target1

B cmsis
H startup_mg22f10x.s
: system_mg32fidee
o User
i main.c
L) mg3afinn_ite
= [StdDriver
1) mg32f10x_ade.c
mg32F10x_anctl.c

< B | N
& Project| @ Books | {} Func...| 04 Temp..|
Build Output
~
v
< >

ULINK2/ME Corte _:

MG32F10x porting to STM32F10x manual Page-12

megawin MG32F10x porting to STM32F10x manual V1.01

13)Configure Read/Only Memeory Areas and Read/Write Memory Areas (Configure Flash and SRAM start
address and size).

tal (MHz): |

ARM Compiler: IUse default compiler version 5 LI

Operating system: INone LI ™ Use Cross-Module Optimization
System Viewer File: I Use MicroLIB I” Big Endian
[™ Use Custom File
— Read/Only Memory Areas — Read/Write Memory Areas
default off-chip Start Size Startup default offchip Start Size MNolnit

~ rom: | | o I Raw: | | r
I~ ROMZ: | | el I~ RAMZ: | | r
I ROM3: | | el I~ RAM3: | | r
r
r

|H,w|1r: IDxZCH}D’D’D’DD |ﬂx9um

.
¥ IROM1: Ifh&mﬂ I[hm

[l IHOM2:| | [al [l |HAM2:| |

o)
<1

| 0K I | Cancel I | Defaults I
14)Configure project head file path in C/C++ tab.

K3 Options for Target ‘Target 1° X
Device] Target | Output | Lizting | Uzer Asn [Linker l Debug | Utilities |
Preprocessor Symbals
Define: |
Undefine: |
Language / Code Generstion
I Executeonly Code [~ Sict ANSIC Wamings
Optmization: [Level 0(00) ™ Enum Cortainer ahways int Al Wamings 7]
[Optimize for Time [Plain Cher is Signed o
™ Spit Load and Store Mutiple [T ReadOnly Postion independert [T No Acto Inciudes
¥ One ELF Section per Function [T Bead-Wite Postion ndependent [V C99 Mode
Ihchude
Paths I _]
Msc l
Controls
Compiler |-c39 ¢ ~cpu Cortex-M3 4 g -O0 -apcs=interwork -splt_sections A
cortrol | /RTE/_Target_1
stnng v
[0K I Cancel Defaults Help

Add 4 path as below:

.\Libraries\CMSIS\Include
.\Libraries\CMSIS\Device\MG\MG32F10x
.\Libraries\MG32F10x_StdPeriph_Driver\inc
.\User

MG32F10x porting to STM32F10x manual Page-13

megawin MG32F10x porting to STM32F10x manual V1.01

Folder Setup ? X

Setup Compiler Include Paths:

“librares CMS154Include
braries\CMSIS"Device \MG \MG32F10x
Alibrares\MG32F 10x_5StdPeriph_Drivertinc
AUser

0K | Cancel |
15)Add define in Preprocessor Symbols: USE_STDPERIPH_DRIVER,MAINCLK_FREQ_72MHz,

HSE_VALUE=12000000

ki Options for Target Target 1' hed
Device I Target] Output] Listingl User C/C++]Asm] Linker] Debug] Ttilities]

Preprocessor Symbols

Define: |USE_STDPERIFH_DRI\-"ER.MAINC LK_FREG_72MHz HSE_VALUE=12000000

Undefine: |

Language / Code Generation

™ Execute-only Code ™ Strict ANSIC Wamings: [Al Wamings -
Cptimization: |Level 0(-00) + ™ Enum Container always int r

I Optimize for Time I Plain Charis Signed [Mo Auto Includes
™ Split Load and Store Muttiple ™ Read-Only Posttion Independent W C99 Mode
[¥ One ELF Section per Function [Read-Write Position Independent W GMNU extensions

ln;!:tﬂe |..'-.Libraﬁes'-.CMSIS'-.IncIude...'-.Libraﬁes'-.CMSIS'-.Device'-.MG'-.M632F1 0x;..\Libraries \MG32F10x_StdP: El
5

Misc |
Controls

Compiler | -c99 —gnu ¢ —cpu Cortex-M3 i -g 00 —apcs=interwork —split_sections -| ../Libraries/CMSIS/Include
control - . /Libraries/CMSIS/Device/MG/MG32F10x - _./Libraries/MG32F10x_5StdPerph_Driver/inc -

string w

| 1):4 | | Cancel | | Defaults | | Help

Click OK. So far, the project configuration is completed.

3.4. Peripheral library configuration

1) startup_mg32f10x.s could be used for configure application stack and heap size as below.

KB CAUsers\3513\Desktop\Template\Project\Template.uvprojx - uVision — (=] =
e Edh View Froiedt Flash Debug Perpherals Tool: SVES Windew Help
15 | | [+ =] | o= o= - g @ veo SR @-|e o & e
5 L w - (| 8% | Targers SR R]
» &] mg3zfiox_adec |] maine] startup_mg32110m.s - =
= 43 St k Size (in Bytea) B ®EFFFFFFE: -~
a2
as
L) startup_me32f10c.s B [FrecEEiee i) |
Mg32fox.c 48 ARER HNIT, READWRITE, ALIGH=3
48 seack bem seace
S0 inizaai_ep
e
=2
= ne Heap Comraguracior
ss
ss
57 [f=ap_size Eou 0=00000100]
5o
na 2= ARER MERE, NOINIT. READWRITE, ALIGN-3
1 ma32nox et o heap_kbas= ©
|ad T si= il <
il Project| @F Books | L} Func..| Oy Tem; Text Editor f,_ Configuration Wizard [
Bulld Output a a
RW-data=o z1-daca-1376
e 5 Wazningta) -
Elapsea: o0:oo:1s -

ST-Link Debugger

MG32F10x porting to STM32F10x manual Page-14

megawin MG32F10x porting to STM32F10x manual V1.01

2) Two macro definition in mg32f10x.h should be noticed.

Project L < |] mg32fioxh v x
B % Project: Template = 53 [~
Sl Target 1 54% #1f !defined USE_STDPERIPH DRIVER
o cMsis S5 H
56
] startup_mg32fi0x.s =
] system_mg32fix.c 58
=45 User 5a
] mainc | R
] mgaafiox_itc 2‘21 s
=L StdDriver 63 L
1] mg32fi0x_ade.c 64/ **
] mg32f10x_anctl.c 3
] mg32f10x_bkp.c zg
1] mg32f10x_cre.c &8 weed to use different HSE, yo
1] mg32f10x_dmac.c 69 compiler preprocessor.
- mgI Il extic ;g f 'defined HSE_VALUE
[mgaafiox frmc.c e EIfif tdefined HSE
] mg32fi0x_gpio.c 73 ||#endif /*
B - 74
| | 2l 7 v
=] project| € Books | 43 Func..| Oy Temp..] || € L
Project Ll * |] mg3zfioxh
(=4 Project: Temnplate = 4407
[=l-ge5 Target 1 S80%
=5 cmsis 4409 #Fifdef USE_STDPERIPH_DRIVEF‘
4410 ude "mg32fl10x conf.h"
] startup_mg32f10u.s 4411 | &
] systemn_mg32f10x.c 3412
B User 4413
_] main.c 44914 @addtogroup Exported macro
. 4415 s OB
L] mg32f10x_it.c A ,
=45 StdDriver 4417

USE_STDPERIPH_DRIVER This macro definition represents that this application will use standard driver,
and this project will include mg32f10x_conf.h head file.

HSE_VALUE This macro definition is used for define MG32F10x Xtal's frequency. Peripheral library will set
external HSE Xtal frequency is 8MHz by default. User should modify this definition here or at the
preprocessor symbol if the Xtal which is using is not 8MHz.

3) Some macro definition in system_mg32f10x.c should be noticed.

MG32F10x porting to STM32F10x manual Page-15

Project A 7 system_mg32f0x.c
=% Project: Template = 7—
=55 Target 1 8
E-5 CMmsIS o o o
B startup_mg32f10x.s ig Finclude "mg32fl0x.h"
1 system_mg32f10x.c 12 6/ *—-
245 User 13 Define clocks
L1 main.c 14 e
L1 mg32fiix_it.c 12 B
=T StdDriver 17
J mg32f1ix_adc.c b 18 cy must be €6MHz/8MHz/12MHz */
_1 mg32f1x_anctl.c 1s ; must be :
1 mg32f10x_bkp.c 22 . ::22 E: o
il mg32f1lx_cre.c 22 HSE clock fregquency must be ESMH
1 mg32f10x_dmac.c 23
] mg32f10x_extic 2
] mg2fiox_fme.c 22 % RS f:;":rwrl;r?'ts;:lei f?i'_cw'_.'.t_f line if you need to relocate your vector Table in
1 mg32f10x_gpio.c 27 // #define '-.E::r_rsB_sfdd—I
<| . | M Ef?;:‘l 12 VECT_TAB_OFFSET 0x0 1< '-.-'e-:tc_: ?ct_:_e base_c{fffet f'__e'_cl.

MAINCLK_FREQ_* This macro definition is used for configure the main clock frequency of MCU. Only
one of the definitions can be selected at the preprocessor symbol (If no definition is selected, the chip main
clock would be MHSI). Should be noticed that all these frequency definitions have requirements for the
Xtal of MCU. For example, the Xtal frequency must be 6/12MHz when user select
MAINCLK_FREQ_72MHz(Notify: macro definition HSE_VALUE should also be modified).

VECT_TAB_SRAM This macro definition represents that interrupt vector will be mapping to SRAM. (Only
while the project needs to be run in SRAM)

VECT_TAB_OFFSET This macro definition is used for configure interrupt vector table start address offset.
(related to Flash or SRAM start address)

3.5. Debugger configuration

3.5.1. Use ST-Link to debug

1) MG32F10x is embedded a CPU core of ARM Cortex-M3 processor. So MG32F10x supports kinds of
debugger which support Cortex-M3 core MCU (such as: JLink, ULink, STLink and CMSIS-DAP). Take
ST-link as example to demonstrate the MG32F10x debugging configuration.

2) Connect ST-Link to PC, connect ST-Link and MG32F10x through SWD interface. Power

on the MCU.

3) Open Options for Target window, switch to Debug tab, select ST-Link debger.

4) Setting debugger configuration.

Options for Target ‘Target 1' X
Device | Target | Output | Listing | User | C/C++ | Asm | Linker Debug] Utilities |
" Use Smulator with restrictions Settings |[| Use: [ST-Link Debugger v|| Settings
[~ Limit Speed to Real-Time
[V Load Application at Startup [V Runto main() [V Load Application at Startup [V Runto main()
Initialization File Inttialization File:
Restore Debug Session Settings Restore Debug Session Settings
[V Breakpoints [V Toolbox [V Breakpoints ¥V Toolbox
[V Watch Windows & Perfformance Analyzer ¥ Watch Windows
[V Memory Display [V System Viewer [V Memory Display [V System Viewer
CPUDLL: Parameter: Driver DLL: Parameter-
l ISARMCMB DLL | -MPU SARMCM3.DLL |-MPU
4 Dialog DLL: Parameter: Dialog DLL: Parameter:
a

megawin

MG32F10x porting to STM32F10x manual V1.01

Options for Target 'Target 1
Device | Torget | Output | Listing | Ussr | CIC+ | Asm | Linker Debug | Utilties |
(" Use Smulator with restrictions Settings || @ Use: [ST-Link Debugger Settings
I~ Limit Speed to Real-Time
[V Load Application at Startup ¥ Run to main() W Load Application at Startup W Run to main()
Initialization File: Inttialization File:
Restore Debug Session Settings Restore Debug Session Settings

[V Breakpoints [V Toolbox [V Breakpoints [V Toolbox

V' Watch Windows & Performance Analyzer ¥ Watch Windows

[V Memory Display [V System Viewer V¥ Memory Display V' System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
[sARMCM3DLL | -MPU |[SARMCM3.DLL [-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:

Select SW Port, then MG32F10x should be detected by ST-Link and be seen on SW Device.

Cortex-M Target Driver Setup X ‘
Debug | Trace | Flash Download I
~Debug Adapter -~ SW Device
Unit B IDCODE Device Name o
Serial Number: SWDIO | 0x2BA01477 ARM CoreSight SW-DP UB
I 56FF70064987495546292187
HW Version: [V2
FW Version: (V2J17S4 & Automstic Detectio) DE
Mmoo 5] ||) SR [CpEs] i
Debug
Connect & Reset Options Cache Options Download Options
Connect: [Normal j Reset: |Autodetect L] [V Cache Code I~ Verify Code Download
¥ Reset after Connect ¥ Cache Memory [~ Download to Flash

Then click OK.

5) Refer to the figure below to configure Utilities tab.

K3 Options for Target ‘Target 1' X
lhvi«l an(etl Du(wt| Listingl User | C/C++ | Azm I Linker | Debug
anioantaskhMenuly 4
(% Use Target Driver for Flash Programming [V Use Debug Driver
= Use Debug Driver — W Update Target before Debugging

int Fle: |

EEE

" Use Extemal Tool for Rash Programming

kgmern:{
r
Configure Image File Processing (FCARM)
Output Fie Add Output File to Group
| [cmsis -
image Fiea Root Folder: | I~ Generate Listing
0K | Concel | Defwdts | Help

Then click Settings button, switch to Flash Download tab, and configure as below.

MG32F10x porting to STM32F10x manual Page-17

megawin MG32F10x porting to STM32F10x manual V1.01

Cortex-M Target Driver Setup x

Debug | Trace Flash Download |

Download Function RAM tor Algorithm
LOAD € EraseFull Chip ¥ Program
.‘a (¥ Erase Sectors W Verify Start: |0x20000000 Size: IDxlDOO
" Do not Erase [~ Resetand Run

Programming Algorithm

Description I Device Size [Device Type Address Range

Start: | Size:

Add | move |

Cortex-M Target Driver Setup X l_

Debug | Trace Flash Download |

Download Function RAM for Algorithm
LOAD " Erase Full Chip ¥ Program I
5; ¥ Erase Sectors v Verify Start: ’OxZOOOOOOO Size: |0x1000

€ Do not Erase [~ Resetand Run

Programming Algorithm

Description [Device Size I Device Type Address Range

Start: I Size:

=1 =1

Find the device you need and click Add.

Add Flash Programming Algarithm >
Description | Flash Size | Device Type | Orrigin | ~
MGE32F103CIT6 96kB Fash On-chip Flash Device Family Package

AMZ%¢128 Flash 16M Ext. Flash 16bit MDK Core

K8P5615U0A Dual Flash 64M Ext. Flash 32bit MDK Core

LPC1 B dBoc MX25VBO35F... &M Ext. Flash 5P| MDK Core

LPC18iex /42 S25FLO32 SP... 4M Ext. Flash 5P| MDK Core

LPC1Biex /43 S25FLOBS SP... M Ext. Flash 5P| MDK Core

LPCA07x/Bx 525FL0D32 SPIFI 4aM Ext. Flash 5P| MDK Core

LPC5460: MT25QL128 SPIFI 16M Ext. Flash SPI MDK Core

M25W640FE Fash M Ext. Flash 16bit MDK Core

MGE32F10x 256kB Flash 256k On-chip Flash MDK Core

MIMXRT105% EcoXP Fash 4M Ext. Flash 5P| MDK Core

RCZ28F&40J3x Dual Flash 16M Ext. Fash 32bit MDK Core

525GL064M Dual Rash 16M Ext. lash 32bt MDK Core

525JL032H_BOT Rash 4aM Ext. Flash 16bit MDK Core

S525JL032H_TOP Fash 4M Ext. Flash 16bit MDK Core

VWRAZF 1w ?RRk R Flazh FRRL Min-rhin Flaszh MK Care w7

Selected Flash Algorthm File:
H:\Keil_v5\ARM\PACK \Megawin \CM3_DFP\1.0.0%Fash"MG32F103C5T6.FLM

Add I Cancel

MG32F10x porting to STM32F10x manual Page-18

megawin MG32F10x porting to STM32F10x manual V1.01

Cortex-M Target Driver Setup x

Debug | Trace Fash Download

Download Function Futbd for Algorithm
LORD " Erase Full Chip & Program
B3 F raseSecons [very Start: [0x20000000 Size: [0x1000
" Do not Erase [~ Reset and Run

Programming Algorithm

[Drescription [Device sizs Device Type Address Range
MGI2FI03CITE 96kB Fash Sk On-chip Aash OB000000H - 0B0TTFFFH

Start: ||:rxDB:e-:mo Size: [Ow0001 8000

Add Remove |

Click OK.Now user should be able to compile, download and debug their own code.
3.5.2. Use J-Link to debug

1) New a folder named “Megawin” under J-Link installed path H:\Program Files
(x86)\SEGGER\JLink V635g\Devices (J-link installed path could be modified, and the demo machine of this
document is installed on disk H). Then new a folder named “MG32F10x” under “Megawin” folder.

2) Copy MG32F10x Flash algorithm to J-Link installed path H:\Program Files
(x86)\SEGGER\JLink V635g\Devices\Megawin\MG32F10x. Flash algorithm would be located under users’ Keil
installed path\Keil_v5\ARM\PACK\Megawin\CM3_DFP\1.0.0\Flash

(H:) » Keilv3 » ARM » PACK » Megawin = CM3_DFP » 1.00 » Flash

Marne - Date modified Type Size

|| MG32F103CSTE.FLM 2021,/11/2 10:34 FLM File 15 KB
| | MG32F103CETE.FLM 2021,/11/2 10:534 FLM File 15 KB
| | MG32F103RETE.FLM 2021,/11/2 10:54 FLM File 15 KB
|| MG32F104RCTE.FLM 20211172 10:534 FLM File 15 KB

(H:) » Program Files (x86) * SEGGER » JLink VE&35g » Devices » Megawin » MG32F10x

M

Marne Date modified Type Size

|| MG3ZF103C9TE.FLM 20211172 10:34 FLM File 13 KB
|| MG32F103CETE.FLM 20211172 10:34 FLM File 13 KB
| | MG32F103RETE.FLM 20211172 10:54 FLM File 15 KB
|| MG32ZF104RCTE.FLM 20211172 10:34 FLM File 13 KB

3) Open J-link devices file on H:\Program Files (x86)\SEGGER\JLink V635g\JLinkDevices.xml and add
MG32F10x information as below, then save.

<Device>
<ChipInfo Vendor="Megawin" Name="MG32F103C9T6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
<FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x18000" Loader="Devices\Megawin\MG32F10x\MG32F103C9T6.FLM"
LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />
</Device>
<Device>
<ChipInfo Vendor="Megawin" Name="MG32F103CBT6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
<FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x20000" Loader="Devices\Megawin\MG32F10x\MG32F103CBT6.FLM"
LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />

MG32F10x porting to STM32F10x manual Page-19

megawin MG32F10x porting to STM32F10x manual V1.01

</Device>
<Device>
<ChipInfo Vendor="Megawin" Name="MG32F1@3RBT6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
<FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x20000" Loader="Devices\Megawin\MG32F10x\MG32F103RBT6.FLM"
LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />
</Device>
<Device>
<ChipInfo Vendor="Megawin" Name="MG32F104RCT6" Core="JLINK_CORE_CORTEX_M3" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" />
<FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" MaxSize="0x40000" Loader="Devices\Megawin\MG32F10x\MG32F104RCT6.FLM"
LoaderType="FLASH_ALGO_TYPE_CMSIS" AlwaysPresent="1" />

</Device>
<pevices
<ChipInfo Ven
<FlashBankInfo N
</Device>
<Device>
<ChipInfo Vendor="Megawin" Name="MG32F103CBT&" Core="JLINK_CORE_CORTEX M3" WorkRAMAddr="0x: " WorkRAMSize="0x1000" />
<FlashBankInfo Name="Internal Flash" BaseRddr="0x08000000" MaxS5ize="0x20000" Loader="Devices\Megawin\MG32F10x\MG32F103CBT6. FLM" LoaderType="FLASH_ALGO_TYPE_CMSIS" RAlwaysPresent="1" />
</Device>
<pevices

Adr="0x20000000" WorkRAMSize="0x1000" />
="Devices\Megawin\MG32F10x\MG32F103C9T6 . FIM" LoaderType="FLASH ALGO_TYPE CMSIS" AlwaysPresent="1" />

Megawin" Name="MG32F103C9TE" Cors="JLINK CORE CORTEX M3" Workl
=="Internal Flash" BaseAddr="0x08000000" MaxSize="0x18000" Load

Adr="0x20000000" WorkRAMSize="0x1000" />
="Devices\Megawin\MG32F10x\MG32F103RBT6 . FIM" LoaderType="FLASH ALGO_TYPE CMSIS" AlwaysPresent="1" />

<ChipInfo Ver

Megawin" Name="MG32F103RBTE" Cors="JLINK CORE CORTEX M3" Workl
=="Internal Flash" Bas=Addr="0x08000000" MaxSize="0x20000" Load

<ChipInfo Vendor="Megawin" Name="MG32F104RCT6" Core="JLINK CORE_CORTEX M3" WorkRAMAddr="0x " WorkRAMSize="0x1000" />
<FlashBankInfo Name="Internal Flash" BaseAddr="0x08000000" Max5ize="0x40000" Loader="Devices\Megawin\MG32F10x\MG32F104RCT6.FIM" LoaderType="FLASHE ALGO_TYPE CMSIS" &
</Device>

Present="1" />

Then open Keil project, open options for Target window and press Settings button after select J-Link on Debug tab.

kA Options for Target Target 1' *
Device] Target] Output] Listing] User] C/C++] hsm] Linker Debug]Utilities]
" Use Simulator with restrictions Settings + Qse:l |J-LINK!J-TRACE Cortex Lll Settings I
™ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run to main() ¥ Load Application at Startup ¥ Run to main()
Initialization File: Initialization File:
Restore Debug Session Settings Restore Debug Session Settings
[¥ Breakpoints ¥ Toolbox [¥ Breakpoints ¥ Toolbox
¥ Watch Windows & Perfformance Analyzer ¥ Watch Windows
[v¥ Memory Display [v¥ System Viewer [v¥ Memory Display [v System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
|SARMCM3.DLL | -MPU |SARMCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|pcw.DLL [pCM3 [TCM.DLL [pCM3
[~ Wam if outdated Executable is loaded [~ Wam if outdated Executable is loaded
Manage Component Viewer Description Files ... |

| 0K | | Cancel | | Defaults I

If J-link is connected to PC and J-Link driver is installed sucessfully, you shall see the window as below.

MG32F10x porting to STM32F10x manual Page-20

megawin

MG32F10x porting to STM32F10x manual V1.01

Cortex JLink/JTrace Target Driver Setup

Debug lTrace 1 Flash Downloadl

J-Link / J-Trace Adapter SW Device

X

SN: 304435649]

SWDI

Device: | J-Link ARM

Hw: | ve0o di:[veasg

J-Link ARM V8 compiled No

Port: Max
lsw -] [smHz -
Auto Clk |

FW :

IDCODE

Device Name

Connect & Reset Options

Cache Options

Connect: [Normal j Reset: |Norma|

[Reset after Connect

j ¥ Cache Code
Iv Cache Memaory

|

po]
—
-
-

Download Options

[~ Verify Code Downloac
[~ Download to Flash

Interface TCP/IP Misc
Network Settings
{« USB " TCP/IP =
IP-Address Port (Auto: Autodetect ILink Info
Scan | 27.0 .0 . 1 @ | 0
| JLink Cmd |

State: ready

If you click Settings and keil promopts something like The selected device xxx is unknown, this problem should be
caused by J-link driver mismatch in Keil. So let's just substitute it.

Bl J-Link V6.32i Device Selection

for flazh download or unlimited flash breakpoints.

i~

Z1

The zelected device "MEIZFT03CATE" iz unknown ta thiz version of the J-Link safbware.

Pleaze make zure that at least the care J-Link zhall connect to, 1z selected.
Proper device selection is required to use the J-Link internal flash loaders

For zome devices which require a special handling, selection of the comect device iz important.

w

ke

TOS T T TS ST

Picture below on the left shows the J-Link driver path which is installed with Keil, and the picture on the right is the
J-Link driver path installed and configured according to chapter 1 by ourself. Now We cover the J-Link driver which is
installed with Keil with everything in our installed J-link directory. After cover completed, reopen Settings in Debug

tab, you shall see the window normally.
(H:) » Keilvs » ARM » Segger »

.

Mame Date modified

Samples 1111 15:23
USBDiriver

E JFlash.exe

KA JFlashLite.exe

EJ JFlashsPlexe

EXA JFlashSPI_Cl.exe

[J2cma.dn

Bl JLink.exe

2021/

Select Flash Download tab, select the chip you

(H:) » Program Files (x86) » SEGGER » JLink_V&33g

-~

Mame Date moedified

Devices

Doc

ETC

GDBServer

RDDI

Samples

USBDriver
E JFlash.exe
KA JFlashLite.exe

2021/10/18 10:56

need, you shall be able to debug.

MG32F10x porting to STM32F10x manual

Page-21

megawin MG32F10x porting to STM32F10x manual V1.01

| Add Flash Programming Algorithm
Debug] Trace

Download Function - i
Edt. Flash 16bt MDK Core

pa ! o
LuAD Erase Full Chi | | opee150GA Dusl Flash B4M Ed.Fash 32bt MDK Core
¥4 # ErascScdors | |LPCTB0v430 Mx2BVEDISF. 8M Ext. Flash SPI MDK Core

£ Do not Erase LPC1800/ 430 S25FLO32 SP... &M Ext. Flash SPI MDK Core

| | LPC1Bux/430x 525FLOG4 SP am Ext.Flash SPI MDK Core

)) LPCA407:/8x 525FL032 SPIFI m Bxt.Fash SPI MDK Core
Programming Algorithm —| | LPC5460¢ MT25QL128 SPIFI 16M Ext.Flash 5Pl MDK Core
M29WG4OFB Flzsh am Ext. Flash 16bt MDK Cors

Beerritas MG 32F 10x 256kB Flash 256k Onchip Flash ~ MDK Core
MIMXRT105x EcoXiP Flash an Ext. Flash 5Pl MDK Core

RC287B40J3x Dual Flash 16M B¢t Fash 32bt MDK Core

$25GLDB4N Dual Flash 16M E¢t Flash 32bt MDK Core

$25JL032H_BOT Flash am Ext. Flash 16bt MDK Cors

525L032H_TOP Flash an Ext. Flash 165t MDK Core

WB32F10x 256kB Flash 256k On-chip Fash MDK Core
H:\Keil_v5\ARM\PACKMagawin\CM3_DFP\1.0.0\Flash \MG32F 103C9T6 FLM

Cancel

i | |

MG32F10x porting to STM32F10x manual Page-22

megawin MG32F10x porting to STM32F10x manual V1.01

4. Layout suggestion

4.1. Printed circuit board

For technical reasons, it is preferable to use a multilayer PCB with a dedicated independent grounding layer
(VSS) and dedicated independent power supply layer (VDD) to provide better coupling and shielding effect. In
many applications, limited by economic conditions that cannot use such printed circuit boards, so it is necessary
to ensure a good grounding and power supply structure.

4.2. Component location

In order to reduce cross-coupling on the PCB, different circuits need to be separated according to their
impact on EMI when designing the layout. For example, high current circuits, low voltage circuits and digital
devices.

4.3. Grounding and power supply(VSS/VDD)

Each module (noisy circuits, low sensitivity circuits, digital circuits) should be grounded individually, and all
the ground should eventually be connected at one point. Avoid or minimize loop areas. To reduce the area of the
power supply loop, the power supply should be as close to the ground as possible. This is because the power
supply loop acts as an antenna, acting as a transmitter and receiver of EMI. Areas of the PCB without
components need to be filled to provide good shielding (especially for single-layer PCB).

4.4. Decoupling

All pins need to be properly connected to the power supply. These connections, including pads, wires and
Vias, shall have as little impedance as possible. A common approach is to increase the width of the line,
including the use of a separate supply layer in a multi-layer PCB. At the same time, each power pin on the
MG32F10x should be paralleled with a decoupled filter ceramic capacitor C(100nF) and chemical capacitor
C(10uF). These capacitors should be as close to the power/ground pins as possible; Or on another layer of the
PCB, under the power/ground pin. Typical values range from 10nF to 100nF, depending on the needs of
practical applications. Figure 1 shows a typical layout of such power/ground pins.

Via to Vpp Via to Vgg

Ox| [e=] O

|

VDD VSS

Figure 1 typical layout of VDD /VSS pins

MG32F10x porting to STM32F10x manual Page-23

megawin MG32F10x porting to STM32F10x manual V1.01

4.5. Power supply scheme

The circuit is powered by a stable power supply VDD.

® Notify:
— If ADC is used, the VDD range must be between 2.4V and 3.6V
— If ADC is not used, the VDD ranges from 2V to 3.6V

@® The VDD pins must be connected to a VDD power supply with external stabilized capacitors (11 100nF
ceramic capacitors and one tantalum capacitor (4.7uF minimum, 10uF typical)).

@® The VBAT pin must be connected to an external battery (1.8V < VBAT < 3.6V). If no external battery is
available, this pin must be connected to the VDD power supply along with a 100nF ceramic capacitor

® VDDA pins must be connected to two external stabilized capacitors (10nF ceramic capacitor +1uF
tantalum capacitor).

® VREF+ pins can be connected to VDDA external power supplies. If a separate external reference voltage

is used on VREF+, a 10nF and a 1yF capacitor must be connected to the pins. In all cases, VREF+ must be
between 2.4V and VDDA.

V
Vgat REF
. _|__|::|VBAT VREF+ 'j"'"“““““i
Lt 10 nF + 1 pF
I I(note 1)
= Vopa 1
V -
o v Vssa
11 x 100 nF DD 1/2/3/../11
+1x10pF

y VREF-
SS 1/2/3/../1

Figure 2 power supply scheme

Note 1. Optional. If a separate external reference voltage is used on VREF+, two capacitors (10nF and 1uF)
must be connected.

Note 2. VREF+ connect to VDDA or VREF

4.6. Other signals

In practical applications, EMC performance can be improved by paying attention to the following points:

e Signals that are affected by temporary disturbances (such as interrupt or shaking signals, rather than LED
commands)

For these signals, laying the ground around the signal line, shortening the line distance, eliminating
adjacent noise and sensitive wiring can improve EMC performance.

For digital signals, the best possible signal-property margin must be achieved to effectively distinguish
between the two logical states (Raise logic '1' as high as possible and lower logic '0' as low as possible). A slow
Schmidt trigger is recommended to eliminate the parasitic state.

e When wiring, the 3W principle should be met as far as possible, and the wiring should be kept away from
adjacent lines as far as possible to reduce coupling and interference. If ADC and CMP require high precision, the
wire of ADC and CMP should be around with ground.

e Noise signal (clock, etc.)

e Sensitive signal (high resistance, etc.)

4.7. Unused IO and its properties

All microcontrollers are designed for a variety of applications, and common applications do not use all
microcontroller resources.

To improve EMC performance, unused clocks, timers, or 1/O pins need to be handled accordingly. For example,

MG32F10x porting to STM32F10x manual Page-24

megawin MG32F10x porting to STM32F10x manual V1.01

1/0 ports should be set to ‘0" or '1' (pull-up or pull-down for unused I/O pins). Modules that are not used should be
disabled.

4.8. Clock

To minimize parallel wiring between LSE and HSE. In figure 3, LSE and HSE are directly separated when
they are led out from the pad.

Figure 3 LSE and HSE layout

4.9. Analog signal

The analog signal is separated from the digital signal, and the analog signal needs to be shielded by the
ground line, so that the sampling accuracy can be guaranteed as much as possible.

4.10. EMI

1. Make sure the power rating is suitable for the application and is optimized using a decoupling capacitor.

2. Provide sufficient filter capacitors on the power supply. High capacity/bypass and decoupling capacitors
shall have low equivalent series inductance (ESL).

3. Create a ground plane if space is available on the wiring layer. These ground areas are connected to the
ground plane through Vias.

4. Keep the current loop as small as possible. Add as many decoupling capacitors as possible.

5. The differential line pair must match the line length, otherwise it will result in timing offset, reduced signal
quality, and increased EMI.

6. Differential routing is required to be on the same plate layer, because the impedance and hole difference
between different layers will reduce the effect of differential mode transmission and introduce common mode noise.

7. Do not have Vias for high-speed signal routing. Ensure that the ground plane at the rear is complete, and
shorten the wires routing distance away from adjacent wires. If the USB interface chip needs a series end resistor or
D line is connected to a pull resistor. Be sure to place these resistors as close to the chip as possible.

8. The power pin of each VDD in MCU should leave 2 capacitor: 1uF and 0.1uF as far as possible

9. SPI or IIC communication line, each signal line string a resistance of about 10R, reserved a 120PF
capacitor. The signal line should be as short as possible.

10. Crystal wiring should be short enough, do not route the signal line on the back of the crystal, to ensure that

the crystal ground plane is complete. If the layout allows, more ground Vias should be drilled around the crystal
oscillator.

Schematic diagram design reference.

MG32F10x porting to STM32F10x manual Page-25

megawin MG32F10x porting to STM32F10x manual V1.01

+3V3

1. The pull up of DP wire needs to be controlled by triode. Make sure the circuit to the DP line is short
enough.

2. The D1, D2 and D3 TVS need to be placed close to the USB port.
3. PIN1 is the power supply, a 10uF and 10nF should be placed near to PIN1 for filtering.
4. The distance between DP DN and USB port should be as short as possible.

MG32F10x porting to STM32F10x manual Page-26

megawin MG32F10x porting to STM32F10x manual V1.01

5. Peripheral porting

5.1. Preparation before porting

Users can use MG32F10x to replace STM32F10x chips of the same type for learning or product program
transplantation, which greatly reduces user cost.

On the other hand, MG32F10x series are independently designed chips, and the underlying design and
library function package are bound to have many differences with STM32F10x. When writing programs, the
programs realized on STM32F10x can not be simply and brutally transplanted directly to MG32F10x, and simple
modifications should be made according to the MG driver library. Requires users to pay a low cost of learning
and time. But don't worry, only need to modify the part involves the MCU register access related part of the code,
the software algorithm, the upper structure, variables such as the main content of the code is not need to change,
that is to say, you need to modify, contains only use to replace the peripheral initialization, interrupt function
structure and the code involves driving function of peripheral data reading and writing, It's not going to be a big
change.

Users who familiar with STM32F10x can be according to the MG32F10x reference manual, firmware library
guide and firmware library to the routine quickly start.

When migrating software, refer to Build a project section and associate header files.

[Notify]: The sample code provided in the development kit almost all use XTAL as the clock source by
default, so if you want to develop with XTAL, please refer to the RCC section of the Software porting chapter to

change this.

MG32F10x porting to STM32F10x manual Page-27

megawin MG32F10x porting to STM32F10x manual V1.01

5.2. ADC

As for the ADC initialization part, we can refer to the relevant ADC sample code to replace the underlying
driver of the related ADC initialization and ADC value acquisition of STM32F10x as a whole. The driver used is
located at mg32f10x_pwr.c, mg32f10x_adc.c, mg32f10x_rcc.c, mg32f10x_anctl.c and mg32f10x_gpio.c. Please
note to add driver files.

ADC_AnalogWatchdog

ADC ChipTemperature
ADC_DMA

ADC DMA_Injected

ADC ExtLinesTrigger

ADC GetVDD

ADC Interrupt

ADC TIMTrigger Autolnjection

/* ADC configuration *
PWR_UnlockANA();

ANCTL_SARADCCmd(ENABLE);

PWR_LockANA();

ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure. ADC_NbrOfChannel = 1;
ADC_Init(&ADC_InitStructure);

/* ADC regular channel3 configuration */
ADC_RegularChannelConfig(ADC_Channel_3, 1, ADC_SampleTime_7Cycles5);
[* Enable EOC interrupt */

ADC_ITConfig(ADC_IT_EOC, ENABLE);

[* Enable ADC external trigger conversion */
ADC_ExternalTrigConvCmd(ENABLE);

/* Enable ADC */

ADC_Cmd(ENABLE);

[* Start ADC calibration */

ADC_StartCalibration();

[* Check the end of ADC calibration */
while(ADC_GetCalibrationStatus());

[* Enable ADC reset calibration register */
ADC_ResetCalibration();

/* Check the end of ADC reset calibration register */
while(ADC_GetResetCalibrationStatus());

/* Start ADC Software Conversion */
ADC_SoftwareStartConvCmd(ENABLE);

[* Waiting for EOC */
while(ADC_GetFlagStatus(ADC_FLAG_EOC) I= SET){}
X=ADC_GetADValue(ADC->DR); // Read ADC value

[Notify]: Do not read ADC values by directly reading the ADC data register. This will result in incorrect
values. Please use driver ADC GetADValue(uintl6 t data);to read ADC value.

MG32F10x porting to STM32F10x manual Page-28

megawin MG32F10x porting to STM32F10x manual V1.01

Interrupt function structure template:
void ADC_IRQHandler(void)

{
if(ADC_GetITStatus(ADC_IT_EOC) != RESET)

{
ADC_ClearITPendingBit(ADC_IT_EOC);
printf("\rADC Channel 3: %-5d", ADC_GetADValue(ADC->DR));
}
}

In addition, for the wiring of analog signals, it is recommended to separate analog signals from digital
signals, and analog signals need to be shielded by ground lines, as mentioned in the previous section of
hardware layout suggestions, so as to ensure the sampling accuracy as much as possible.

MG32F10x porting to STM32F10x manual Page-29

megawin MG32F10x porting to STM32F10x manual V1.01

5.3. ANCTL(Analog controller)
5.3.1. CMP

Analog comparator is a very useful peripheral that is not included in the STM32F10x series. The sample
code is located in ANCTL\CMP. User can call the function in it. The driver used is located at mg32f10x_pwr.c,
mg32f10x_rcc.c, mg32f10x_anctl.c and mg32f10x_gpio.c. Please note to add driver files.

PWR_UnlockANA();

ANCTL_CMPAConfig(CMPA_PSEL_PB4, CMPA_NSEL_PB6);
ANCTL_CMPACMd(ENABLE);

PWR_LockANA();

CMP_Result = ANCTL_CMPAGetOutputLevel();//Read output level

The code above sets the positive and negative input of the comparator and completes the initialization of
CMP.

[Notify]: There is no interrupt function in CMP.
5.3.2. DCSS

DCSS is a clock safety system that starts to work when HSE is stable and stops working when HSE stops. It
can be used as a detector of XTAL failed event. So if there is a requirement of detect XTAL failed event from
user, refer to the code below and replace the underlying driver of the related initialization of STM32F10x as a
whole. The driver used is located at mg32f10x_pwr.c, mg32f10x_rcc.c, mg32f10x_anctl.c and mg32f10x_gpio.c.
Please note to add driver files.

RCC_DCSSCLKCmd(ENABLE);
ANCTL_ClockSecuritySystemCmd(ENABLE);

Interrupt function structure template:
void NMI_Handler(void)

{
if (ANCTL_GetITStatus(ANCTL_IT_DCSS) |= RESET)
{
ANCTL_ClearITPendingBit(ANCTL_IT_DCSS);
while (1)
{
/* LED2 blink */
GPIO_ToggleBits(GPIOB, GPIO_Pin_13);
Delay(100000);
}
}
}

Through the code above to enable DCSS.

MG32F10x porting to STM32F10x manual Page-30

megawin MG32F10x porting to STM32F10x manual V1.01

5.4. BKP

BKP is the data backup register which can store some backup data. Since the backup domain (BKP) is still
powered by VBAT when VDD is turned off, its contents are not lost if there is a battery is connected to the VBAT
pins. It's simple to use by directly store value after enable the register. The driver used is located at
mg32f10x_pwr.c, mg32f10x_rcc.c and mg32f10x_bkp.c. Please note to add driver files.

PWR_BackupAccessCmd(ENABLE);
BKP->DR1 = 0x55AA; //Store value 0x55AA into BKP

5.5. CRC

It's simple to use CRC by directly use the function in driver after enable CRC. User can user the Deinit()
below to replace the underlying driver of the related initialization of STM32F10x as a whole. Use the CRC check
function when you need to calculate. The driver used is located at mg32f10x_crc.c, mg32f10x_rcc.c,
mg32f10x_sfm.c, computeBytes.c, computeHalfWords.c and computeWords.c. Please note to add driver files.

CRC_SFM_Delnit();
resultl = CRC8_ComputeBytes(bytes, _countof(bytes));

5.6. DMAC

Direct memory access (DMA) is used to provide high-speed data transfer between peripherals, between
peripherals and memory, or between memory and memory without CPU process. That allows CPU to finish
other mission while DMA is working. User can refer actual situation to replace the underlying driver of the related
initialization of STM32F10x as a whole. The driver used is located at mg32f10x_rcc.c and mg32f10x_dmac.c.
Please note to add driver files.

The actual porting code can refer to the DMAC sample code.

DMAC MemoryToMemory

DMAC MemoryToUart

DMAC MemoryTollart MultiBlock
DMAC UartToMemaory

DMAC UartToMemory_MultiBlock
DMAC UartToUart MultiBlock

DMAC_ChannelCmd(DMAC1, DMAC_Channel_0, ENABLE);

Call the function above after finish the initialization of DMA. Modify the channel and module, then the DMA #]45
transmission should be started.

Interrupt function structure template:
void DMAC1_IRQHandler(void)

{
if(DMAC_GetITStatus(DMAC1, DMAC_Channel_0, DMAC_IT_BLOCK) != RESET)
{
DMAC_ClearITPendingBit(DMAC1, DMAC_Channel_0, DMAC_IT_BLOCK);
printf("DMA block transfer complete.\r\n");
}

if(DMAC_GetITStatus(DMAC1, DMAC_Channel_0, DMAC_IT_TFR) != RESET)

{
DMAC_ClearITPendingBit(DMAC1, DMAC_Channel_0, DMAC_IT_TFR);

printf("DMA transfer complete.\r\n");

MG32F10x porting to STM32F10x manual Page-31

megawin MG32F10x porting to STM32F10x manual V1.01

if(memcmp(memDst, memSrc, sizeof(memSrc)) == 0) {
printf("DMA transfer success!!'\r\n");
}
else {
printf("DMA transfer failed!!'\r\n");
}
}

if(DMAC_GetITStatus(DMAC1, DMAC_Channel_0, DMAC_IT_ERR) != RESET)

{
DMAC_ClearITPendingBit(DMAC1, DMAC_Channel_0, DMAC_IT_ERR);

printf("DMA transfer error!!\r\n");

}
}

[Notify]: Strongly suggest not to use DMAC to do the ADC, and ADC is only supported in single DMA mode.

MG32F10x porting to STM32F10x manual Page-32

megawin MG32F10x porting to STM32F10x manual V1.01

5.7. EXTI

External interrupt EXTI support defferent interrupt or event, and support rising, falling edge or both edge
trigger. Code below shows the configuration of EXTI. User can refer actual situation to replace the underlying
driver of the related initialization of STM32F10x as a whole. The driver used is located at mg32f10x_rcc.c,
mg32f10x_exti.c and mg32f10x_gpio.c. Please note to add driver files.

/* Connect EXTIO Line to PAO pin */
GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0);

[* Configure EXTIO line */

EXTI_InitStructure.EXTI_Line = EXTI_LineO0;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);

[* Configure and enable EXTIO interrupt */
NVIC_InitStructure.NVIC_IRQChannel = EXTIO_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = O;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0O;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

Replace the external interrupt initialization of the code and refer to actual situation to select the event trigger
and pin.

Interrupt function structure template:
void EXTIO_IRQHandler(void)
{
if(EXTI_GetITStatus(EXTI_Line0) != RESET)
{
/* Toggle LED1 */
GPIO_ToggleBits(GPIOB, GPIO_Pin_14);

[* Clear the EXTI line 0 pending bit */
EXTI_ClearITPendingBit(EXTI_Line0);
}
}

Another interrupt function structure template:
void EXTI9_5 IRQHandler(void)
{
if(EXTI_GetITStatus(EXTI_Line6) != RESET)
{
[* Toggle LED2 */
GPIO_ToggleBits(GPIOB, GPIO_Pin_13);

[* Clear the EXTI line 6 pending bit */
EXTI_ClearITPendingBit(EXTI_Line6);
}
}

MG32F10x porting to STM32F10x manual Page-33

megawin MG32F10x porting to STM32F10x manual V1.01

5.8. FMC(Flash memory controller)

FMC is Flash memory controller which is used to modify flash data. There are two sample code in SDK as
below. The first one is calculate the flash CRC while the second is programming flash data.User can refer actual
situation to replace the programming flash code. The driver used is located at mg32f10x_pwr.c, mg32f10x_rcc.c,
mg32f10x_anctl.c and mg32f10x_fmc.c. Please note to add driver files.

FMC CalculateCRC
FMC _Program

/* Before flash operation, FHSI must be enabled */
PWR_UnlockANA();
ANCTL_FHSICmd(ENABLE);

PWR_LockANA();

/* Erase the specified FLASH page */
FMC_ErasePage(TEST_PAGE_ADDR);
/* Clear page latch */
FMC_ClearPageLatch();
/* Write data to page latch */
for(iter = O; iter < 64; iter++) {
FMC->BUF][iter] = 0x12345678 + iter;
}
/* Program data in page latch to the specified FLASH page */
FMC_ProgramPage(TEST_PAGE_ADDR);

[Notify]: User should enable FHSI clock and don’t disable it before performing flash operations.

As the code above, erase the corresponding area of flash, then clear page latch, then user could program the
flash. After that, should execute FMC_ProgramPage(TEST_PAGE_ADDR); to apply.

5.9. GPIO

There are 4 sample code about GPIO as below. User can find them in GPIO directory. The driver used is
located at mg32f10x_rcc.c and mg32f10x_gpio.c. Please note to add driver files.

GPIO BitBand
GPIO_I12C_Master
GPIO _InputQOutput
GPIO 10Toggle

RCC_APB1PeriphClockCmd(RCC_APB1Periph_BMX1 |RCC_APB1Periph_GPIOA
|[RCC_APB1Periph_QSPI, ENABLE);

GPIO_Init(GPIOA, GPIO_Pin_4 |GPIO_Pin_5 |GPIO_Pin_6 |GPIO_Pin_7, GPIO_MODE_AF
|GPIO_OTYPE_PP |GPIO_PUPD_NOPULL |GPIO_SPEED_HIGH |GPIO_AF5);

The initialization of GPIO is simple. Just call GPIO_Init() after enable port clock to enable GPIO. The first
parameter of the function is select port while the second parameter is setting pin, alternative function and mode.

MG32F10x porting to STM32F10x manual Page-34

megawin MG32F10x porting to STM32F10x manual V1.01

5.10. 12C

The MG32F10x has two 12C, which can control all 12C bus-specific sequences, protocols, arbitrations and
timing, and can support standard mode, fast mode and high-speed mode. [2C1 provides multi-master mode
function and supports SMBUS(System Management Bus) protocol.

There are 2 sample code about 12C as below. User can find them in 12C directory. The driver used is
located at mg32f10x_rcc.c, mg32f10x_i2c.c and mg32f10x_gpio.c. Please note to add driver files. If user need
to use 24C02, file drv_eeprom_24c02.c also should be added.

12C_24C02

12C_24C02_Interrupt
12C_Master_HighSpeed
12C_MasterDMARx_SlaveDMATx
12C_MasterDMATx_SlaveDMARx
12C_Simulate_24C02
12C_SMBus_Master

It can be seen that the sample code type is more, but also contains the 12C memory 24C02 sample code,
convenient for users to use. User can configure the STM32F10x based on the actual usage frequency, and then
replace the I12C initialization code of the STM32F10x.

eeprom_24c02_init();

result = eeprom_24c02_random_read(0x06, &rdatal);
printf("Read from [0x06] is 0x%02X\r\n", rdatal);
printf("eeprom_24c02_random_read() - TX_ABRT_SOURCE = %08X\r\n", result);// 12C read data
if(result = 0) {
errCode = Ox11;
goto finish;

}

result = eeprom_24c02_byte write(0x06, rdatal + 1); //I2C write data
User can use driver functions to read and write data from 24C02 after initialization.

Interrupt function structure template:
/[12C2 Interrupt Routine
void 12C2_IRQHandler(void)
{
uint32_t cmd;
uint32_t tx_limit, rx_limit;

if(12C_GetlTStatus(12C2, 12C_IT_TX_ABRT) != RESET)

{
g_i2c_xfer_info.tx_abrt_source = [2C_GetTxAbortSource(I12C2);
12C2->INTR_MASK = I2C_INTR_STOP_DET; // Disable all interrupt except STOP_DET interrupt
goto tx_aborted;

}

if(12C_GetITStatus(I2C2, 12C_IT_RX_FULL) != RESET)

{
while((12C_GetFlagStatus(I12C2, 12C_FLAG_RFNE) != RESET) && (g_i2c_xfer_info.rx_len))

{
*g_i2c_xfer_info.rx_buf = 12C_ReadData(12C2);
g_i2c_xfer_info.rx_buf++;
g_i2c_xfer_info.rx_len--;

}

MG32F10x porting to STM32F10x manual Page-35

megawin MG32F10x porting to STM32F10x manual V1.01

}

if(I2C_GetITStatus(I12C2, I2C_IT_TX_EMPTY) != RESET)
{
tx_limit = 8 - 12C_GetTxFIFOLevel(12C2);
rx_limit = 8 - 12C_GetRxFIFOLevel(12C2);
while((tx_limit > 0) && (rx_limit > 0))
{
if((g_i2c_xfer_info.tx_len + g_i2c_xfer_info.rx_cmd_len) == 0) {
12C_ITConfig(12C2, 12C_IT_TX_EMPTY, DISABLE); // Disable TX Empty Interrupt
break;

}

cmd = 0;

if((g_i2c_xfer_info.tx_len + g_i2c_xfer_info.rx_cmd_len) == 1) {
cmd |= 12C_DATA_CMD_STOP;

}

if(g_i2c_xfer_info.tx_len !=0)

{
12C_WriteDataCmd(12C2, cmd | *g_i2c_xfer_info.tx_buf);
g_i2c_xfer_info.tx_buf++;
g_i2c_xfer_info.tx_len--;

}

else if(g_i2c_xfer_info.rx_cmd_len !=0)

{
12C_WriteDataCmd(12C2, cmd | I2C_DATA_CMD_READ);
g_i2c_xfer_info.rx_cmd_len--;
rx_limit--;

}

tx_limit--;

tx_aborted:
if(1I2C_GetITStatus(I2C2, 12C_IT_STOP_DET) |= RESET) {
I12C_ClearlTPendingBit(I12C2, OXFFFF); /I Clear all interrupt flag
I12C_ITConfig(I12C2, OXFFFF, DISABLE); // Disable all interrupt
g_i2c_xfer_info.flag_complete = 1,
}
}

If user need to use DMA, the sample code provides a sample that uses DMA to send and receive data.
When porting, copy the DMA and 12C related functions to the project you want to port.

MG32F10x porting to STM32F10x manual Page-36

megawin MG32F10x porting to STM32F10x manual V1.01

5.11. 12S

The MG32F10x has a built-in I12S bus interface, supporting a variety of audio transmission protocols,
working in the master mode, supporting dual channel input and output. Provide master clock (MCLK) and serial
clock (SCLK) as well as frame clock (WS) and serial data (SD0/SD1).

I12S is generally used for playing audio, so it also provides the example of recording audio code, refer to the
example code in I2S path. User can refer actual situation to replace the underlying driver of the related
initialization of STM32F10x as a whole. The driver used is located at mg32f10x_gpio.c, mg32f10x_rcc.c,
mg32f10x_i2c.c and mg32f10x_i2s.c. Please note to add driver files. If user need to use es8316, files
drv_es8316.c and wav_data.c also should be added.

125 PlayAudio
125 RecordPlayAudio

BSP_I12S_Init();
StartPlay();

According to the two functions above, adjust the required functions and packet size, and you can
communicate with the 12S device and play audio.

Interrupt function structure template:
void 12S_IRQHandler(void)

{
if (I2S_Channel_GetITStatus(1, 12S_IT_TXFE) != RESET)
{
12S_Channel_WriteLeftData(1, (audio_data[audio_index + 1] << 8) | audio_data[audio_index]);
12S_Channel_WriteRightData(1, (audio_data[audio_index + 3] << 8) | audio_data[audio_index + 2]);
audio_index += 4;
if(audio_index >= audio_data_length)
{
audio_index = 0;
}
}
}

[Notify]: Strongly suggest not to use MG32F10x as USB audio, cause USB Buffer is 128Bytes which is
not enough for audio.

5.12. IWDG(independent watchdog)

Refer to the IWDG sample code to enable the watchdog, the watchdog configuration is relatively simple.
User can refer actual underflow frequency to replace the underlying driver of the related initialization of
STM32F10x as a whole. The driver used is located at mg32f10x_pwr.c, mg32f10x_anctl.c, mg32f10x_rcc.c,
mg32f10x_iwdg.c and mg32f10x_gpio.c. Please note to add driver files.

/* Enable IWDG clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_IWDG, ENABLE);

[* Enable write access to IWDG_PR and IWDG_RLR registers */
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);

/* IWDG counter clock: LSI/32 */
IWDG_SetPrescaler(IWDG_Prescaler_32);
while(IWDG_GetFlagStatus(IWDG_FLAG_PVU) = RESET);

MG32F10x porting to STM32F10x manual Page-37

megawin MG32F10x porting to STM32F10x manual V1.01

/* IWDG timeout is about 250ms */
IWDG_SetReload(LSI_FREQ / 32 * 0.250);
while(IWDG_GetFlagStatus(IWDG_FLAG_RVU) != RESET);

/* ATTENTION: It is best to reload IWDG counter when the RVU bit is 0. */
while(IWDG_GetFlagStatus(IWDG_FLAG_RVU) != RESET);
IWDG_ReloadCounter();

/* Enable IWDG */
IWDG_Enable();

/* ATTENTION: It is best to reload IWDG counter when the RVU bit is 0. */
if IWDG_GetFlagStatus(IWDG_FLAG_RVU) == RESET) {
IWDG_ReloadCounter();

}

There are some limitations to the IWDG that need to be noted:
1. Once IWDG is enabled, it cannot be disabled even if a reset occurs.

Solution: Set the IWDG timeout setting to maximum before the code runs, and reload the IWDG counter
constantly.

2. If areset occurs after the IWDG is started, it takes three LSI clock cycles for the IWDG domain to be
ready.

Solution: After the LSI is ready, delay about 1 millisecond before configuring the IWDG.

3. There is a chance that IWDG reload counter cannot be reloaded even execute reload IWDG counter
repeatedly.

Solution: Make sure the RVU bit is 0 before performing the reload IWDG counter operation. (RVU bit
indicates whether the reload counter operation is complete)

4. After the watchdog is enabled, the Debug function is out of control. If you still need the debug function,
you are advised to enable DBG_IWDG_STOP in the DBGMCU_CR register to stop the watchdog in debugging.

5. The independent watchdog cannot generate interrupt. To generate interrupt, use the window watchdog.

At present, the sample code has been provided in accordance with the above standards to do, users
transplant please pay attention to copy. In addition, the LSI clock has some deviation. Therefore, you need to
reserve more time for timing.

MG32F10x porting to STM32F10x manual Page-38

megawin MG32F10x porting to STM32F10x manual V1.01

5.13. LED

LED driver controller contains hardware 8-segment LED driver serial output circuit, and the module clock is
the internal system clock by default. LED driver peripherals also have a corresponding example code, imitate the
example of LED path under the sample code. The driver used is located at mg32f10x_rcc.c, mg32f10x_led.c
and mg32f10x_gpio.c. Please note to add driver files.

RCC_APB2PeriphClockCmd(RCC_APB2Periph_BMX2 | RCC_APB2Periph_LED, ENABLE);

/* Reset LED module */
LED_Delnit();

/* LED configuration */
LED->CYC = 200;
LED->ECO = 180;
LED->CON = (0x00 << 4);
LED->CON |= 0x01;

[* Infinite loop */
while (1)
{

for(iter = 0; iter < 16; iter++)

{
LED_SetSegmentCode(0, table[iter]);

}

After initializing the peripherals, call the driver function LED_SetSegmentCode() to output. The actual
display array needs to be adjusted according to the actual LED.

5.14. NVIC

NVIC mainly involves the control and shielding of interrupt priority, which will not be used in general
migration, but if necessary, you can refer to the following program of NVIC path under the sample code.

NVIC_DMA_WFIMode
NVIC_IRQ_Mask
NVIC_IRQ_Priority

See readme.txt under each sample code for the functions implemented. It's explained in detail.

5.15. PWR(power control)

Setting power mode is a common setup, and the MG32F10x series offers SLEEP, STANDBY and STOP
low-power modes which has sample code. The driver used is located at mg32f10x_pwr.c, mg32f10x_anctl.c and
mg32f10x_rcc.c. Please note to add driver files.

PWR_PVD
PWR_SLEEP
PWR_STANDBY
PWR_STOP

MG32F10x porting to STM32F10x manual Page-39

megawin MG32F10x porting to STM32F10x manual V1.01

/* Enter SLEEP Mode */

PWR_EnterSLEEPMode(PWR_FCLK_Div2, PWR_EntryMode_WFI);

/* Enter STANDBY Mode */

PWR_EnterSTANDBYMode();

/* Enter STOP Mode */

PWR_EnterSTOPMode(PWR_STOPMode_LP4_S32KOFF, PWR_EntryMode_WFI);

Select a mode based on actual requirements. User can refer actual using mode to replace the underlying
driver of the related initialization of STM32F10x as a whole.

PVD is power detecter to detect VDD voltage, user can set the detect voltage to detect VDD voltage. Copy void
PVD_Config(void) into user project, and modify the voltage to use the PVD. The driver used is located at
mg32f10x_pwr.c, mg32f10x_anctl.c and mg32f10x_rcc.c. Please note to add driver files.

/* Configure the PVD Level to 5 (refer to the electrical characteristics of
you device datasheet for more details) */
ANCTL_PVDLevelConfig(ANCTL_PVDLevel_5);
Table 12-3. PVD voltage threshold selection

PLS[2:0] Voltage detect level on falling edge Voltage detect level on rising edge
3'b000 214 225
3'b001 224 235
3'b010 234 245
Fb011 2.44 2.55
3'b100 254 265
3'b101 264 275
3'b110 274 285
3'b111 284 295

Refer to MG32F10x_RM.pdf, select voltage detect level.

Interrupt function structure template:
void PVD_IRQHandler(void)

{
if(EXTI_GetITStatus(EXTI_Line16) = RESET)

{
* Clear the EXTI line 16 pending bit */
EXTI_ClearITPendingBit(EXTI_Linel6);

[* Change LED?2 status */
GPIO_ToggleBits(GPIOB, GPIO_Pin_13);

MG32F10x porting to STM32F10x manual Page-40

megawin MG32F10x porting to STM32F10x manual V1.01

5.16. RCC

There are four clock sources in MG32F10x can be used to drive the system clock: MHSI(BMHZz)internal
OSC, FHSI(48MHz) internal OSC, PLL clock and HSE external OSC. In addition, There are two subclock
sources in device: LSI(32KHz)internal low-speed OSC LSI(32KHz) internal lowspeed OSC, used to drive IWDG
and LSE(32.768KHz) LSE(32.768KHz) external low-speed OSC clock to drive RTC.

There are two sample code is provided. The driver used is located at mg32f10x_pwr.c, mg32f10x_anctl.c,
mg32f10x_rcc.c and mg32f10x_gpio.c. Please note to add driver files.

RCC ClockConfig
RCC ClockConfig2

The sample code under RCC_ClockConfig path is using XTAL to initial system clock while
RCC_ClockConfig2 is using internal OSC. User may not find the place of clock initial. The function is located at
the place as below instead of main.c. Of course, users can adjust the location of the clock initialization according
to custom, such as putting it back in main.c.

L X J system_mg32f10x.c J main.c J mg32f1L
- Project RCC_CleckConfig 101 e
|-g Target 102 1]
=S CMSIS ¢
104 woid SystemInit (wvoid
J startup_mg32f10x.s 105 §1 o l:)
_] system_mg32fllx.c 106 /* Unlocks write to ANCTL r
= User \ 107 PWE->ANAKEY] = 0Ox03;
J main.c 108 PWE->ANAKEY2 = O0x0C;
N . . 109
B Stherlph_Dmrer 110 /% Turn off DOR +/
J Misc.C 111 ANCTL->PORCR = OxTEBE;
] mg2f10x_anctl.c 112
J mg32f10x_gpio.c 113 /* Locks write to ANCTL reg
114 PWE->ANAKEY] = Ox00;
] mg32f10x_pwr.c 115 PWR->ANAKEYZ = 0x00;
j mg32f1le_rec.c 116
117 SetSysClock(): h____
118
116 [O45 FA=F UTMT TRAR SDAM

MG32F10x porting to STM32F10x manual Page-41

megawin MG32F10x porting to STM32F10x manual V1.01

static void SetSysClockTo72(void)

{
__10 uint32_t StartUpCounter = 0, HSEStatus = 0;

/* Unlocks write to ANCTL registers */
PWR->ANAKEY1 = 0x03;
PWR->ANAKEY2 = 0x0C;

I* APB1CLK = MAINCLK */
RCC->APB1PRE = RCC_APB1PRE_SRCEN;
RCC->APB1PRE |= 0x00;

[* Configure PDO and PD1 to analog mode */

RCC->APB1ENR = RCC_APB1ENR_BMXI1EN | RCC_APB1ENR_GPIODEN;
GPIOD->CFGMSK = 0xFFFC;

GPIOD->MODER = 0x0F;

/* Enable HSE */
ANCTL->HSECR1 = ANCTL_HSECR1_PADOEN;
ANCTL->HSECRO = ANCTL_HSECRO_HSEON,;

[* Wait till HSE is ready and if Time out is reached exit */

do

{
HSEStatus = ANCTL->HSESR & ANCTL_HSESR_HSERDY;
StartUpCounter++;

} while((HSEStatus == 0) && (StartUpCounter = HSE_STARTUP_TIMEOUT));

if (HSEStatus !'= 0)
{
[* Configure Flash prefetch, Cache and wait state */
CACHE->CR = CACHE_CR_CHEEN | CACHE_CR_PREFEN_ON | CACHE_CR_LATENCY_2WS;

/* AHBCLK = MAINCLK */
RCC->AHBPRE = 0x00;

/* APB2CLK = MAINCLK */
RCC->APB2PRE = RCC_APB2PRE_SRCEN;
RCC->APB2PRE |= 0x00;

#if (HSE_VALUE == 6000000)
/* PLL configuration: PLLCLK = 6MHz * 12 =72 MHz */
RCC->PLLSRC = RCC_PLLSRC_HSE;
RCC->PLLPRE = RCC_PLLPRE_SRCEN;
RCC->PLLPRE |= 0x00;
ANCTL->PLLCR = ANCTL_PLLCR_PLLMUL_12;

#elif (HSE_VALUE == 12000000)
/* PLL configuration: PLLCLK = 12MHz / 2 * 12 = 72 MHz */
RCC->PLLSRC = RCC_PLLSRC_HSE;
RCC->PLLPRE = RCC_PLLPRE_SRCEN;
RCC->PLLPRE |= RCC_PLLPRE_RATIO_2;
RCC->PLLPRE |= RCC_PLLPRE_DIVEN;
ANCTL->PLLCR = ANCTL_PLLCR_PLLMUL_12;

MG32F10x porting to STM32F10x manual Page-42

megawin MG32F10x porting to STM32F10x manual V1.01

#endif

/* Enable PLL */
ANCTL->PLLENR = ANCTL_PLLENR_PLLON;

[* Wait till PLL is ready */
while(ANCTL->PLLSR != 0x03)
{

}

[* Select PLL as system clock source */
RCC->MAINCLKSRC = RCC_MAINCLKSRC_PLLCLK;
RCC->MAINCLKUEN = RCC_MAINCLKUEN_ENA;

}

else

{ I* If HSE fails to start-up, the application will have wrong clock

configuration. User can add here some code to deal with this error */

while (1);

}

[* Locks write to ANCTL registers */
PWR->ANAKEY1 = 0x00;
PWR->ANAKEY?2 = 0x00;

The code above is the code of clock initialization. User can copy and modify the code above refer to actual
frequency you need and replace the underlying driver of the related initialization of STM32F10x as a whole.
Please include #include "mg32f10x.h".

Among them, the most critical part is frequency multply, select PLL source.

RCC->PLLSRC = RCC_PLLSRC_HSE;
RCC->PLLPRE = RCC_PLLPRE_SRCEN,;
RCC->PLLPRE |= RCC_PLLPRE_RATIO_2;
RCC->PLLPRE |= RCC_PLLPRE_DIVEN;
ANCTL->PLLCR = ANCTL_PLLCR_PLLMUL_12;

PLLSRC is select PLL source. If user don’t use XTAL, the SRC should not select HSE, can set to
RCC_PLLSRC_MHSI. The internal OSC is 8MHz. Then delete the code about HSE, and select correct
frequency multiple and division multiple. After that, user can output correct PLL clock.

[* Select PLL as system clock source */
RCC->MAINCLKSRC = RCC_MAINCLKSRC_PLLCLK;
RCC->MAINCLKUEN = RCC_MAINCLKUEN_ENA,;

Finally, select PLLCLK when select MAINCLKSRC.

MG32F10x porting to STM32F10x manual Page-43

megawin MG32F10x porting to STM32F10x manual V1.01

5.17. RNG(Random Number Generator)

Random Number Generator (RNG) uses a 24bit LFSR to generate an 8bit random number.The RNG SFRs
can be accessed through APB2. The driver used is located at mg32f10x_rng.c and mg32f10x_rcc.c. Please note
to add driver files.

It's very simple to use RNG, just to enable it.

/* Reset RNG module */
RNG_Delnit();

[* Enable RNG generation */
RNG_Cmd(ENABLE);
printf("Generated random number is %d\r\n", RNG_RandByte());

As the code above, using RNG_RandByte() to catch a random number.

5.18. RTC

RTC migration is relatively simple, refer to the sample code under RTC path. The driver used is located at
mg32f10x_pwr.c, mg32f10x_rcc.c, mg32f10x_rtc.c and mg32f10x_bkp.c. Please note to add driver files.

void RTC_Configuration(void)
/* Reset Backup Domain */
BKP_Delnit();

/* Enable LSE */

BKP_LSEConfig(BKP_LSE_ON);

/* Wait till LSE is ready */

while (BKP_GetLSEReadyFlagStatus() == RESET)

{}

/* Select LSE as RTC Clock Source */
BKP_RTCCLKConfig(BKP_RTCCLKSource_LSE);

/* Enable RTC Clock */
BKP_RTCCLKCmd(ENABLE);

/* Wait for RTC registers synchronization */
RTC_WaitForSynchro();

/* Wait until last write operation on RTC registers has finished */
RTC_WaitForLastTask();

/* Enable the RTC Second */
RTC_ITConfig(RTC_IT_SEC, ENABLE);

/* Wait until last write operation on RTC registers has finished */
RTC_WaitForLastTask();

/* Set RTC prescaler: set RTC period to 1sec */
RTC_SetPrescaler(32767); /* RTC period = RTCCLK/RTC_PR =(32.768 KHz)/(32767+1) */

/* Wait until last write operation on RTC registers has finished */

MG32F10x porting to STM32F10x manual Page-44

megawin MG32F10x porting to STM32F10x manual V1.01

RTC_WaitForLastTask();

/* Sets the RTC counter */
RTC_SetCounter(40271);

As above, modify prescaler and period to make RTC working functionally. User can copy the code above

and replace the underlying driver of the related initialization of STM32F10x as a whole.

void Time_Display(uint32_t TimeVar)

{
uint32_t THH =0, TMM =0, TSS = 0;

/* Reset RTC Counter when Time is 23:59:59 */

if (RTC_GetCounter() >= 0x0001517F)

{
RTC_SetCounter(0x0);
/* Wait until last write operation on RTC registers has finished */
RTC_WaitForLastTask();

/* Compute hours */

THH = TimeVar / 3600;

/* Compute minutes */

TMM = (TimeVar % 3600) / 60;
/* Compute seconds */

TSS = (TimeVar % 3600) % 60;

printf("Time: %0.2d:%0.2d:%0.2d\r", THH, TMM, TSS);

The sample code also provides Hour, Minute and second unit to convert.

Interrupt function structure template:
void RTC_IRQHandler(void)

{
if (RTC_GetITStatus(RTC_IT_SEC) != RESET)

{
/* Clear the RTC Second interrupt */
RTC_ClearITPendingBit(RTC_IT_SEC);

/* Enable time update */
TimeDisplay = 1;

MG32F10x porting to STM32F10x manual Page-45

megawin MG32F10x porting to STM32F10x manual V1.01

5.19. SFM(Special Function Macro)

SFM is simply used to Count the number of “1” in a WORD (32bit), expand all the bits in a WORD (32bit) by
defined rate. Refer to the sample code under SFM path. The driver used is located at mg32f10x_sfm.c and
mg32f10x_rcc.c. Please note to add driver files.

SFM_ComputeBitl
SFM_ExpandBits

CRC_SFM_Delnit();

printf("The number of bit 1 in OXAAAAAAAA is %d\r\n", SFM_ComputeBitINumber(OXAAAAAAAA));
printf("The number of bit 1 in 0x55555555 is %d\r\n", SFM_ComputeBit1INumber(0x55555555));
printf("The number of bit 1 in OXFFFFFFFF is %d\r\n", SFM_ComputeBit1INumber(OxFFFFFFFF));
printf("The number of bit 1 in OxX7FFFFFFF is %d\r\n", SFM_ComputeBitINumber(Ox7FFFFFFF));
printf("The number of bit 1 in 0x00000000 is %d\r\n", SFM_ComputeBitINumber(0x00000000));
printf("The number of bit 1 in 0x1BC4D029 is %d\r\n", SFM_ComputeBitINumber(0x1BC4D029));
printf("The number of bit 1 in OXFFFFO00O is %d\r\n", SFM_ComputeBit1Number(OxFFFF0000));
printf("The number of bit 1 in 0XO000FOFF is %d\r\n", SFM_ComputeBit1Number(0x0000FOFF));
printf("The number of bit 1 in 0X5503AAFF is %d\r\n", SFM_ComputeBit1Number(Ox5503AAFF));

User can directly call the driver function to compute after simply initial SFM module.

5.20. SPI

Sample code about SPI is more, user can use them refer to their needs. All code is under SPI path. The
driver used is located at mg32f10x_gpio.c, mg32f10x_rcc.c and mg32f10x_spi.c. Please note to add driver files.

QSPl_Master DMA
QSPI_Master_Interrupt
QSPI_QuadSPI_FLASH
QSPI_SPI_FLASH

SPIM2 Master DMA
SPIM2_Master_Interrupt
SPIM2_SPI_FLASH

SPIS1 Slave DMA

SPIS1 _Slave Interrupt
SPIS2 Slave DMA

SPIS2 Slave Interrupt

/* SPI configuration */

SPI_Delnit(SPIM2);

SPI_InitStructure.SPI_TransferMode = SPI_TransferMode_TxAndRX;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_BaudRatePrescaler = 8;
SPI_InitStructure.SPI_FrameFormat = SPI_FrameFormat_SPI;
SPI_Init(SPIM2, &SPI_InitStructure);

SPI_ITConfig(SPIM2, OxFF, DISABLE);

SPI_NSSConfig(SPIM2, SPI_NSS_0, ENABLE);

MG32F10x porting to STM32F10x manual Page-46

megawin MG32F10x porting to STM32F10x manual V1.01

As above to initial SPI, user can modify SPI clock according to prescaler and SPI data format to replace the
underlying driver of the related initialization of STM32F10x as a whole.

while (SPI_GetFlagStatus(QSPI, SPI_FLAG_TFE) == RESET);
SPI_WriteData(QSPI, x); //write value x through SPI

while (SPI_GetFlagStatus(QSPI, SPI_FLAG_RFNE) == RESET);
X = SPI_ReadData(QSPI); /lread SPI data to x

Interrupt function structure template:
void QSPI_IRQHandler(void)

{
if(SP1_GetITStatus(QSPI, SPI_IT_RXF) = RESET)
{
while(SPI_GetFlagStatus(QSPI, SPI_FLAG_RFNE) != RESET)
{
master_rx_buf{rx_index] = SPI_ReadData(QSPI);
rx_index++;
if(rx_index >=20) {
SPI_ITConfig(QSPI, SPI_IT_RXF, DISABLE);
break;
}
}
}
if(SP1_GetITStatus(QSPI, SPI_IT_TXE) != RESET)
{
while(SPI_GetFlagStatus(QSPI, SPI_FLAG_TFNF) |= RESET)
{
SPI_WriteData(QSPI, master_tx_data[tx_index]);
tX_index++;
if(tx_index >= 20) {
SPI_ITConfig(QSPI, SPI_IT_TXE, DISABLE);
break;
}
}
}
}
5.21. SYSTICK

Systick always be used to do millisecond delay. Refer to the sample code under SysTick path to configure
SYSTICK. The driver used is located at mg32f10x_rcc.c. Please note to add driver files.

SystemCoreClockUpdate();
if (SysTick_Config(SystemCoreClock / 1000))
{
[* Capture error */
while (1);
}

Through code above to finish systick initialization. Parameter systemCoreClock should be modify to actual
system clock. User can replace the underlying driver of the related initialization of STM32F10x as a whole.

MG32F10x porting to STM32F10x manual Page-47

megawin MG32F10x porting to STM32F10x manual V1.01

void Delay(__10 uint32_t nTime)
{

TimingDelay = nTime;

while(TimingDelay != 0);
}

/**
* @brief This function handles SysTick Handler.

* @param None
* @return None

*/
void SysTick_Handler(void)
{ if (TimingDelay != 0x00)
{
TimingDelay--;
}
}

Finally, add the interrupt function to call the Delay function. This Delay should also be replaced from
STM32F10x Delay.

MG32F10x porting to STM32F10x manual Page-48

megawin MG32F10x porting to STM32F10x manual V1.01

5.22. TIM

Timer is very commonly used peripherals, functions are very much, in order to facilitate the user transplant,
we also provide a large number of timer sample code. Users can according to the sample code under TIM path
of each different code in the readme.TXT, understand the implementation of each program function, and
according to the actual use frequency and mode of configuration, and then replace the related TIM initialization
function code of STM32F10x. The driver used is located at mg32f10x_tim.c and mg32f10x_rcc.c. Please note to
add driver files.

TIM_B5teps

TIM_7PWM _Output
TIM_Base
TIM_CascadeSynchro
TIM_ComplementarySignals
TIM_DMA
TIM_ExtTrigger_Synchro
TIM_InputCapture
TIM_OCActive
TIM_CClnactive
TINM_OnePulse
TIM_ParallelSynchro
TIM_PWM_Input
TIM_PWM_Output
TIM_TIM1_OCToggle
TIM_TIM1_PWMCQutput
TIM_TIM1ComplementarySignals

| JlinkSettings.ini

[main.c

=| readme.but r 4
| TIM_6Steps.uvopix
KA TIM 6Steps.uvprojx

[Notify]: If user need PWM with Dead time, please use TIM1.

TIM1ComplementarySignals code is the PWMComplementary output. User can refer to this sample in
applications like BLDC and so on.

/* Time Base configuration */

TIM_TimeBaseStructure. TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure. TIM_Period = TimerPeriod;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0O;

TIM_TimeBaselnit(TIM1, &TIM_TimeBaseStructure);

/* Channel 1, 2 and 3 Configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode PWM2;
TIM_OCInitStructure. TIM_OutputState = TIM_OutputState Enable;
TIM_OCInitStructure. TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure. TIM_Pulse = ChannellPulse;

MG32F10x porting to STM32F10x manual Page-49

megawin MG32F10x porting to STM32F10x manual V1.01

TIM_OCInitStructure. TIM_OCPolarity = TIM_OCPolarity _Low;
TIM_OCInitStructure. TIM_OCNPolarity = TIM_OCNPolarity _Low;
TIM_OCInitStructure. TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure. TIM_OCNIdleState = TIM_OCIdleState Reset;

TIM_OC1Init(TIM1, &TIM_OClInitStructure);

TIM_OCInitStructure.TIM_Pulse = Channel2Pulse;
TIM_OC2Init(TIM1, &TIM_OCInitStructure);

TIM_OCInitStructure. TIM_Pulse = Channel3Pulse;
TIM_OC3Init(TIM1, &TIM_OCInitStructure);

/* Automatic Output enable, Break, dead time and lock configuration*/
TIM_BDTRInitStructure. TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure. TIM_OSSIState = TIM_OSSIState Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
TIM_BDTRInitStructure.TIM_DeadTime = 11;
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity High;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;

TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);

/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);

/* Main Output Enable */
TIM_CtrIPWMOutputs(TIM1, ENABLE);

If user need a simply timing function, TIM_Base sample should be a good sample to refer. The driver used is
located at mg32f10x_tim.c and mg32f10x_rcc.c. Please note to add driver files. The most difference from PWM
sample is the TIM_OCInitStructure. TIM_OCMode = TIM_OCMode_Timing; PWM is PWMMode.

/*

TIM2 Configuration: Output Compare Timing Mode:

TIM2 counter clock at 12 MHz

CC1 update rate = TIM2 counter clock / CCR1_Val = 286.72 Hz
CC2 update rate = TIM2 counter clock / CCR2_Val = 523.97 Hz
CC3 update rate = TIM2 counter clock / CCR3_Val = 811.08 Hz
CC4 update rate = TIM2 counter clock / CCR4_Val = 1389.85 Hz
*/

/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 12000000) - 1;

/* Time base configuration */

TIM_TimeBaseStructure.TIM_Period = OXFFFFF;
TIM_TimeBaseStructure. TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaselnit(TIM2, &TIM_TimeBaseStructure);

MG32F10x porting to STM32F10x manual Page-50

megawin

/* Prescaler configuration */
TIM_PrescalerConfig(TIM2, PrescalerValue, TIM_PSCReloadMode_Immediate);

/* Output Compare Timing Mode configuration: Channell */
TIM_OCInitStructure. TIM_OCMode = TIM_OCMode_Timing;
TIM_OCInitStructure. TIM_OutputState = TIM_OutputState Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure. TIM_OCPolarity = TIM_OCPolarity High;
TIM_OCL1Init(TIM2, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* Output Compare Timing Mode configuration: Channel2 */
TIM_OCInitStructure. TIM_OutputState = TIM_OutputState Enable;
TIM_OCInitStructure. TIM_Pulse = CCR2_Val;

TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* Output Compare Timing Mode configuration: Channel3 */
TIM_OCInitStructure. TIM_OutputState = TIM_OutputState Enable;
TIM_OCInitStructure. TIM_Pulse = CCR3_Val;

TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* Output Compare Timing Mode configuration: Channel4 */
TIM_OCInitStructure. TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure. TIM_Pulse = CCR4_Val,

TIM_OCA4Init(TIM2, &TIM_OCInitStructure);

TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* TIM IT enable */

MG32F10x porting to STM32F10x manual V1.01

TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

/* TIM2 enable counter */
TIM_Cmd(TIM2, ENABLE);

MG32F10x porting to STM32F10x manual Page-51

megawin MG32F10x porting to STM32F10x manual V1.01

5.23. UART

Serial port is also commonly used. We also provide a large number of timer sample code about it. Users
can according to the sample code under UART path of each different code in the readme.TXT, understand the
implementation of each program function. Mostly UART_Printf sample is enough. The driver used is located at
mg32f10x_uart.c, mg32f10x_rcc.c and mg32f10x_gpio.c. Please note to add driver files.

/* UART1 configuration */
UART_Delnit(UART1);
UART _InitStructure. UART_BaudRate = 115200;
UART _InitStructure. UART_WordLength = UART_WordLength_8b;
UART _InitStructure.UART_StopBits = UART_StopBits_One;
UART _InitStructure.UART_Parity = UART_Parity_None;
UART _InitStructure. UART_AutoFlowControl = UART_AutoFlowControl_None;
UART_Init(UART1, &UART _InitStructure);
UART_FIFOCmd(UART1, ENABLE);
Through code above, modify baud rate and data format you need to initial UART.Using pin can be changed 52
in GPIO initialization.

After initialization is finished, then user should be able to output data through UART by using printf function.
Be attention, user should include # include <stdio.h> before using printf.

scanf("%d", &value); //read uart data
printf("You enter is %d\r\n", value); //write uart data

B
while(!(UART_GetLineStatus(UART1) & UART_LINE_STATUS_DR));
value = UART_ReadData(UARTL1); // read uart data
UART_WriteData(UARTL, value); // write uart data
while('(UART_GetLineStatus(UART1) & UART_LINE_STATUS_THRE));

Interrupt function structure template:
void UART1_IRQHandler(void)
{

uint8_t rbyte;

uint8_tint_id,;

int_id = UART_GetIntID(UART1);

if(int_id == UART_INTID_RDA)

{

rbyte = UART_ReadData(UART1);

rxBuffer[rxIndex++] = rbyte;
if (rxIndex >=100) {
flag = 1;
rxIndex = 0;
}
}
else if (int_id == UART_INTID_THRE)
{
if (txIndex < sizeof(txBuffer)) {
UART_WriteData(UART1, txBuffer[txIndex]);
txIndex++;
}
else {
UART_ITConfig(UART1, UART_IT_THRE, DISABLE);

}

MG32F10x porting to STM32F10x manual Page-52

megawin MG32F10x porting to STM32F10x manual V1.01

5.24. USB

We provide 4 different sample code about USB. User can do porting according to different applications. The
specific implementation can also be seen in the readme.txt of various programs under the USB path of the
sample code. The driver used is located at mg32f10x_anctl.c, mg32f10x_rcc.c, mg32f10x_pwr.c,
mg32f10x_gpio.c and usbd_user.c. Please note to add driver files.

USB_CDC Echo

USE HID Mouse

USE _Mass Storage SPI_FLASH
USEB _Mass Storage SRAM

[Notify]: If user use MHSI internal OSC to be USB clock source, additional code need to added into project.
The code has already stored in /Documents/USB Do Not Use Crystal Code/

The following is the configuration process of the MHSI to be USB source. This method need to use Systick
or TIM4. Select a peripheral file you need to perform the following configuration.

—. Keil configuration
[Notify]: This configuration is only valid while using USB Function.

The following figure shows the KEIL project configuration.

W. Options for Target Target 1'

Device] Target] Output] Listing] U=zer CAC++ lﬁ;sm] Linker] Debug] Ttilities

Preprocessor Symbols
Define: |L|SE_STD PERIPH_DRIVER]

Undefine: |

—. Peripheral requirement
This method need to use Systick or TIM4.

=. Using course
1. Insert MHSI Trim code.

jmntTrim.c jmntTrim.h

Insert jmntTrim.c and jmntTrim.h file into project.

MG32F10x porting to STM32F10x manual Page-53

megawin MG32F10x porting to STM32F10x manual V1.01

2. Configure USB
a. Enable USB SOF interrupt.

* @brief Connects the device to the USB host.

return None

;.

» f;_,) ¢

void USBD_User_Connect(void)

1
/* Enable BMX1, GPIQA clock *,
RCC APBlPerlphclockad(RCC _APB1Periph_BMX1 | RCC APBIPerlph GPIOA, ENABLE);
/* Configure the drive current of PA1l and PAl2 *
GPIO_DrlveCurrentConflg(GPIOA, GPIO Pin_11 |GPIO_Pin_12, @x83);
/* Configure PAll and PAl12 as Alternate function mode */
GPIO_Init(GPIOA, GPIO_Pin_11 |GPIO_Pin_12, GPIO_MODE_AF | GPIO_AF3);
USB->INTRUSBE = USB_INTRUSBE_RSTIE | USB_INTRUSBE_RSUIE | USB_INTRUSBE_SOFIE;
}

b. Include JmntTrim.h head file in usbd_user.c

¥finclude - "jmntTrim.h"

c. Call CheckTune function in USBD_User_SOF function.
void USBD User S5SOF (void)
{

-CheckTune () ;

d. The interrupt priority of USB should be configured to highest pripority.
e. Other configurations can be configured based on user definition.

3. Call jmntTrimInit function in main function.
int main (void)
{
‘MATHCLEKConfig MHSI 48MH=z():
JmmtTrimTnit () ;-

Please note that jmntTrim.h head file must be included.

4. Configure Trim parameter refer to different system clock.
The default main frequency is 48 MHz. If the user's main frequency is 48 MHz, do not change the parameter.
If the user's main frequency is not 48 MHz, user can modify the value.

. The -range -of -sof - frame -interval -TIMER -counts. - */
#define TNR HEAD- 44500
#define TNR TATL-51500

MG32F10x porting to STM32F10x manual Page-54

megawin MG32F10x porting to STM32F10x manual V1.01

5.25. WWDG(window watchdoq)

The window watchdog timer (WWDG) is used to detect system failures due to software malfunctions. After
the window watchdog timerstarts, the value of downcounter reduces progressively. The watchdog timer causes
a reset when the counter reached Ox3F (the CNT[6] bit becomes cleared). The watchdog timer also causes a
reset if the counter is refreshed before the counter reached the window register value. So the software should
refresh the counter in a limited window.

We also provide sample code about WWDG for user to port. User can configure the underflow period refer to
they need and replace the related initialization function code of STM32F10x. The driver used is located at
mg32f10x_wwdg.c and mg32f10x_rcc.c. Please note to add driver files.

I* WWDG clock counter = (PCLK(96MHZz)/4096)/8 = 2929.6875 Hz (~0.341 ms) */
WWDG_ SetPrescaler(WWDG_ Prescaler_8);

/*
Enable WWDG and set counter value to 127, WWDG timeout = ~0.341 ms * 64 = 21.8 ms

In this case the refresh window is: ~0.341 ms * (127-80) = 16.027 ms < refresh window < ~0.341 ms *
64 = 21.8ms

*

/
WWDG_SetWindowValue(80);
WWDG_Enable(127);

WWDG_SetCounter(127);

The window watchdog is setting to allow to reload watchdog between counter value is window value to 64.
Any other window to reload the counter or the counter value is less than 64, will cause a reset.

It's easy to reload the counter. Just execute WWDG_SetCounter(x); function in right time.

Interrupt function structure template:
void WWDG_IRQHandler(void)

{
WWDG_ClearFlag();

MG32F10x porting to STM32F10x manual Page-55

megawin MG32F10x porting to STM32F10x manual V1.01

6. Reversion

Version 1.01 (2022 0411) Chapter
1 |Change "LCD Driver" in hardware resource difference table to "LED Driver" 2.2
2 |ADC software port added access data function and interrupt function template 5.2
3 |CMP software port added read compare value function and notify 53.1
4 |DCSS software port added interrupt function template 5.3.2
5 |[DMAC software port added interrupt function template 5.6
6 |EXTI software port added interrupt function template 5.7
7 |12C software port added interrupt function template 5.10
8 |12S software port added interrupt function template 511
9 |IWDG software port added notify 5.12
10 |PVD software port added interrupt function template 5.15
11 |RTC software port added access data function and interrupt function template 5.18
12 |SPI software port added access data function and interrupt function template 5.20
13 |UART software port added access data function and interrupt function template 5.23
14 |\WWDG software port added interrupt function template 5.25
Version 1.0 (2022_0214) Chapter
1 |Initial version

MG32F10x porting to STM32F10x manual Page-56

	Index
	1. Introduction
	1.1. Document Using

	2. Hardware difference comparison
	2.1. Pin differences comparison
	2.2. Resource comparison

	3. Development environment setup
	3.1. Development IDE for MG32F10x
	3.2. Installation of the development package
	3.3. Build a project
	3.4. Peripheral library configuration
	3.5. Debugger configuration
	3.5.1. Use ST-Link to debug
	3.5.2. Use J-Link to debug

	4. Layout suggestion
	4.1. Printed circuit board
	4.2. Component location
	4.3. Grounding and power supply(VSS/VDD)
	4.4. Decoupling
	4.5. Power supply scheme
	4.6. Other signals
	4.7. Unused IO and its properties
	4.8. Clock
	4.9. Analog signal
	4.10. EMI

	5. Peripheral porting
	5.1. Preparation before porting
	5.2. ADC
	5.3. ANCTL(Analog controller)
	5.3.1. CMP
	5.3.2. DCSS

	5.4. BKP
	5.5. CRC
	5.6. DMAC
	5.7. EXTI
	5.8. FMC(Flash memory controller)
	5.9. GPIO
	5.10. I2C
	5.11. I2S
	5.12. IWDG(independent watchdog)
	5.13. LED
	5.14. NVIC
	5.15. PWR(power control)
	5.16. RCC
	5.17. RNG(Random Number Generator)
	5.18. RTC
	5.19. SFM(Special Function Macro)
	5.20. SPI
	5.21. SYSTICK
	5.22. TIM
	5.23. UART
	5.24. USB
	5.25. WWDG(window watchdog)

	6. Reversion

